Quality control of sc/snRNA-seq
Mariano Ruz Jurado
Goethe UniversityDOtools.Rmd
Installation
DOtools is an R package distributed as part of the Bioconductor project. To install the package, start R and enter:
install.packages("BiocManager") # WORK iN PROGRESS
BiocManager::install("DOtools")
Alternatively, you can instead install the latest development version from GitHub with:
install.packages("devtools")
devtools::install_github("MarianoRuzJurado/DOtools")
Usage
DOtools contains different functions for processing and visualizing gene expression in scRNA/snRNA experiments:
In this vignette we showcase how to use the functions with public available data.
Libraries
DOtools can be imported as:
library(DOtools)
#Additional packages
library(Seurat)
library(plyr)
library(dplyr)
library(tibble)
library(enrichR)
library(kableExtra)
#Python installation set up
DO.PyEnv()
#> 2025-06-26 17:46:45 - Using existing conda environment at: /home/mariano/.venv/DOtools
#> 2025-06-26 17:46:45 - Python packages ready for DOtools!
reticulate::use_python("~/.venv/DOtools/bin/python")
Quality control
DOtools
The DO.Import()
function provides a streamlined pipeline
for performing quality control on single-cell or single-nucleus RNA
sequencing (sc/snRNA-seq) data. It takes as input a list of .h5 files
generated by e.g.Β CellRanger or STARsolo, along with sample names and
metadata.
During preprocessing, low-quality genes and cells are filtered out based on specified thresholds. Genes expressed in fewer than five cells are removed. Cells are filtered according to mitochondrial gene content, number of detected genes, total UMI counts, and potential doublets. The function supports doublet detection using scDblFinder. Thresholds for mitochondrial content (e.g., 5% for scRNA-seq and 3% for snRNA-seq), gene counts, and UMI counts can be defined to tailor the filtering.
After filtering, samples are merged into one Seurat object, followed by log-normalisation, scaling, and the identification of highly variable genes. To help assess the effect of quality control, violin plots showing distributions of key metrics before and after filtering are automatically generated and saved alongside the input files. A summary of removed genes and cells is also recorded.
To show how the quality control works, we are going to use a public dataset from 10X from human blood of healthy and donors with a malignant tumor:
base <- DOtools:::.example_10x()
#> π₯ Downloading data to /tmp/Rtmp9zSWgB/dotools_datasets_1693241a7883e1
#> β¬οΈ Downloading healthy filtered to /tmp/Rtmp9zSWgB/dotools_datasets_1693241a7883e1/healthy/outs/filtered_feature_bc_matrix.h5
#> β¬οΈ Downloading healthy raw to /tmp/Rtmp9zSWgB/dotools_datasets_1693241a7883e1/healthy/outs/raw_feature_bc_matrix.h5
#> β¬οΈ Downloading disease filtered to /tmp/Rtmp9zSWgB/dotools_datasets_1693241a7883e1/disease/outs/filtered_feature_bc_matrix.h5
#> β¬οΈ Downloading disease raw to /tmp/Rtmp9zSWgB/dotools_datasets_1693241a7883e1/disease/outs/raw_feature_bc_matrix.h5
paths = c(file.path(base, "healthy/outs/filtered_feature_bc_matrix.h5"),
file.path(base, "disease/outs/filtered_feature_bc_matrix.h5"))
Seu_obj <- DO.Import(pathways = paths,
ids = c("healthy-1", "disease-1"),
TenX = T,
DeleteDoublets = T,
cut_mt = .05,
min_counts = 500,
min_genes = 300,
high_quantile = .95)
#> 2025-06-26 17:46:50 - Sample: healthy-1
#> 2025-06-26 17:46:50 - Read matrix
#> Genome matrix has multiple modalities, returning a list of matrices for this genome
#> 2025-06-26 17:46:55 - Create Seurat
#> 2025-06-26 17:46:56 - Setting condition in object to: healthy
#> 2025-06-26 17:46:56 - Get Mitochondrial+Ribosomal content
#> 2025-06-26 17:46:57 - Create QC images
#> 2025-06-26 17:46:58 - Start Filtering
#> 2025-06-26 17:47:00 - Running Normalisation
#> 2025-06-26 17:47:01 - Running Variable Gene Detection
#> 2025-06-26 17:47:01 - Running scDblFinder
#> Creating ~1712 artificial doublets...
#> Dimensional reduction
#> Evaluating kNN...
#> Training model...
#> iter=0, 255 cells excluded from training.
#> iter=1, 232 cells excluded from training.
#> iter=2, 210 cells excluded from training.
#> Threshold found:0.337
#> 64 (3%) doublets called
#> 2025-06-26 17:47:11 - Sample: disease-1
#> 2025-06-26 17:47:11 - Read matrix
#> Genome matrix has multiple modalities, returning a list of matrices for this genome
#> 2025-06-26 17:47:14 - Create Seurat
#> 2025-06-26 17:47:14 - Setting condition in object to: disease
#> 2025-06-26 17:47:14 - Get Mitochondrial+Ribosomal content
#> 2025-06-26 17:47:15 - Create QC images
#> 2025-06-26 17:47:16 - Start Filtering
#> 2025-06-26 17:47:17 - Running Normalisation
#> 2025-06-26 17:47:18 - Running Variable Gene Detection
#> 2025-06-26 17:47:18 - Running scDblFinder
#> Creating ~1500 artificial doublets...
#> Dimensional reduction
#> Evaluating kNN...
#> Training model...
#> iter=0, 51 cells excluded from training.
#> iter=1, 25 cells excluded from training.
#> iter=2, 25 cells excluded from training.
#> Threshold found:0.579
#> 21 (2.8%) doublets called
#> 2025-06-26 17:47:24 - Merging objects
#> 2025-06-26 17:47:24 - Running ScaleData
#> Centering and scaling data matrix
#> 2025-06-26 17:47:25 - Run PCA
#> Splitting 'counts', 'data' layers. Not splitting 'scale.data'. If you would like to split other layers, set in `layers` argument.
prefilterplots <- list.files(path = base, pattern = "prefiltered.*\\.svg$", full.names = TRUE, recursive = TRUE)
postfilterplots <- list.files(path = base, pattern = "postfiltered.*\\.svg$", full.names = TRUE, recursive = TRUE)
We can now check the quality before introducing filterings:
pQC1 <- magick::image_read_svg(prefilterplots[1])
plot(pQC1)
And after:
pQC2 <- magick::image_read_svg(postfilterplots[1])
plot(pQC2)
In Addition, we can observe how similar the samples are through
running a correlation analysis.
DO.Correlation(Seu_obj)
#> Scale for fill is already present.
#> Adding another scale for fill, which will replace the existing scale.
We observed that most cells were removed due to increased mitochondrial content. Depending on the experimental design, the mitochondrial content threshold can be adjusted to retain a higher number of cells, if minimizing cell loss is of relevance.
Data integration
After quality control the prefered integration method can be chosen
within Seuratβs IntegrateLayers
function. Additionally, we
implemented a new wrapper function for the scVI Integration from the scvi-tools package.
After the integration completes, we run the Leiden algorithm to find
clusters and generate UMAP embeddings.
#Integration through Seurat
Seu_obj <- IntegrateLayers(object = Seu_obj,
method = CCAIntegration,
orig.reduction = "pca",
new.reduction = "integrated.cca",
verbose = T)
#> Finding all pairwise anchors
#> Running CCA
#> Merging objects
#> Finding neighborhoods
#> Finding anchors
#> Found 2808 anchors
#> Merging dataset 2 into 1
#> Extracting anchors for merged samples
#> Finding integration vectors
#> Finding integration vector weights
#> Integrating data
#After Integration we join the layers
Seu_obj <- JoinLayers(Seu_obj)
#Integration with scVI
Seu_obj <- DO.scVI(Seu_object = Seu_obj,
batch_key ="orig.ident",
layer_counts = "counts",
layer_logcounts = "logcounts")
#> βΉ Using the 'counts' assay as the X matrix
#> Run scVI
#> Anndata setup with scvi-tools version 1.3.0.
#>
#> Setup via `SCVI.setup_anndata` with arguments:
#> {
#> β 'layer': 'counts',
#> β 'batch_key': 'orig.ident',
#> β 'labels_key': None,
#> β 'size_factor_key': None,
#> β 'categorical_covariate_keys': None,
#> β 'continuous_covariate_keys': None
#> }
#>
#> Summary Statistics
#> ββββββββββββββββββββββββββββ³ββββββββ
#> β Summary Stat Key β Value β
#> β‘βββββββββββββββββββββββββββββββββββ©
#> β n_batch β 2 β
#> β n_cells β 2807 β
#> β n_extra_categorical_covs β 0 β
#> β n_extra_continuous_covs β 0 β
#> β n_labels β 1 β
#> β n_vars β 2000 β
#> ββββββββββββββββββββββββββββ΄ββββββββ
#> Data Registry
#> ββββββββββββββββ³ββββββββββββββββββββββββββββ
#> β Registry Key β scvi-tools Location β
#> β‘βββββββββββββββββββββββββββββββββββββββββββ©
#> β X β adata.layers['counts'] β
#> β batch β adata.obs['_scvi_batch'] β
#> β labels β adata.obs['_scvi_labels'] β
#> ββββββββββββββββ΄ββββββββββββββββββββββββββββ
#> batch State Registry
#> βββββββββββββββββββββββββββ³βββββββββββββ³ββββββββββββββββββββββ
#> β Source Location β Categories β scvi-tools Encoding β
#> β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
#> β adata.obs['orig.ident'] β disease-1 β 0 β
#> β β healthy-1 β 1 β
#> βββββββββββββββββββββββββββ΄βββββββββββββ΄ββββββββββββββββββββββ
#> labels State Registry
#> βββββββββββββββββββββββββββββ³βββββββββββββ³ββββββββββββββββββββββ
#> β Source Location β Categories β scvi-tools Encoding β
#> β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
#> β adata.obs['_scvi_labels'] β 0 β 0 β
#> βββββββββββββββββββββββββββββ΄βββββββββββββ΄ββββββββββββββββββββββ
#> Training: 0%| | 0/400 [00:00<?, ?it/s]Epoch 1/400: 0%| | 0/400 [00:00<?, ?it/s]Epoch 1/400: 0%| | 1/400 [00:00<02:39, 2.51it/s]Epoch 1/400: 0%| | 1/400 [00:00<02:39, 2.51it/s, v_num=1, train_loss_step=843, train_loss_epoch=1.09e+3]Epoch 2/400: 0%| | 1/400 [00:00<02:39, 2.51it/s, v_num=1, train_loss_step=843, train_loss_epoch=1.09e+3]Epoch 2/400: 0%| | 2/400 [00:00<01:50, 3.60it/s, v_num=1, train_loss_step=843, train_loss_epoch=1.09e+3]Epoch 2/400: 0%| | 2/400 [00:00<01:50, 3.60it/s, v_num=1, train_loss_step=657, train_loss_epoch=765] Epoch 3/400: 0%| | 2/400 [00:00<01:50, 3.60it/s, v_num=1, train_loss_step=657, train_loss_epoch=765]Epoch 3/400: 1%| | 3/400 [00:00<01:33, 4.24it/s, v_num=1, train_loss_step=657, train_loss_epoch=765]Epoch 3/400: 1%| | 3/400 [00:00<01:33, 4.24it/s, v_num=1, train_loss_step=682, train_loss_epoch=665]Epoch 4/400: 1%| | 3/400 [00:00<01:33, 4.24it/s, v_num=1, train_loss_step=682, train_loss_epoch=665]Epoch 4/400: 1%| | 4/400 [00:00<01:27, 4.53it/s, v_num=1, train_loss_step=682, train_loss_epoch=665]Epoch 4/400: 1%| | 4/400 [00:00<01:27, 4.53it/s, v_num=1, train_loss_step=633, train_loss_epoch=630]Epoch 5/400: 1%| | 4/400 [00:00<01:27, 4.53it/s, v_num=1, train_loss_step=633, train_loss_epoch=630]Epoch 5/400: 1%|β | 5/400 [00:01<01:21, 4.84it/s, v_num=1, train_loss_step=633, train_loss_epoch=630]Epoch 5/400: 1%|β | 5/400 [00:01<01:21, 4.84it/s, v_num=1, train_loss_step=624, train_loss_epoch=615]Epoch 6/400: 1%|β | 5/400 [00:01<01:21, 4.84it/s, v_num=1, train_loss_step=624, train_loss_epoch=615]Epoch 6/400: 2%|β | 6/400 [00:01<01:16, 5.17it/s, v_num=1, train_loss_step=624, train_loss_epoch=615]Epoch 6/400: 2%|β | 6/400 [00:01<01:16, 5.17it/s, v_num=1, train_loss_step=611, train_loss_epoch=608]Epoch 7/400: 2%|β | 6/400 [00:01<01:16, 5.17it/s, v_num=1, train_loss_step=611, train_loss_epoch=608]Epoch 7/400: 2%|β | 7/400 [00:01<01:12, 5.45it/s, v_num=1, train_loss_step=611, train_loss_epoch=608]Epoch 7/400: 2%|β | 7/400 [00:01<01:12, 5.45it/s, v_num=1, train_loss_step=599, train_loss_epoch=602]Epoch 8/400: 2%|β | 7/400 [00:01<01:12, 5.45it/s, v_num=1, train_loss_step=599, train_loss_epoch=602]Epoch 8/400: 2%|β | 8/400 [00:01<01:08, 5.71it/s, v_num=1, train_loss_step=599, train_loss_epoch=602]Epoch 8/400: 2%|β | 8/400 [00:01<01:08, 5.71it/s, v_num=1, train_loss_step=634, train_loss_epoch=598]Epoch 9/400: 2%|β | 8/400 [00:01<01:08, 5.71it/s, v_num=1, train_loss_step=634, train_loss_epoch=598]Epoch 9/400: 2%|β | 9/400 [00:01<01:06, 5.88it/s, v_num=1, train_loss_step=634, train_loss_epoch=598]Epoch 9/400: 2%|β | 9/400 [00:01<01:06, 5.88it/s, v_num=1, train_loss_step=628, train_loss_epoch=596]Epoch 10/400: 2%|β | 9/400 [00:01<01:06, 5.88it/s, v_num=1, train_loss_step=628, train_loss_epoch=596]Epoch 10/400: 2%|β | 10/400 [00:01<01:04, 6.01it/s, v_num=1, train_loss_step=628, train_loss_epoch=596]Epoch 10/400: 2%|β | 10/400 [00:01<01:04, 6.01it/s, v_num=1, train_loss_step=619, train_loss_epoch=593]Epoch 11/400: 2%|β | 10/400 [00:01<01:04, 6.01it/s, v_num=1, train_loss_step=619, train_loss_epoch=593]Epoch 11/400: 3%|β | 11/400 [00:02<01:03, 6.12it/s, v_num=1, train_loss_step=619, train_loss_epoch=593]Epoch 11/400: 3%|β | 11/400 [00:02<01:03, 6.12it/s, v_num=1, train_loss_step=606, train_loss_epoch=590]Epoch 12/400: 3%|β | 11/400 [00:02<01:03, 6.12it/s, v_num=1, train_loss_step=606, train_loss_epoch=590]Epoch 12/400: 3%|β | 12/400 [00:02<01:03, 6.11it/s, v_num=1, train_loss_step=606, train_loss_epoch=590]Epoch 12/400: 3%|β | 12/400 [00:02<01:03, 6.11it/s, v_num=1, train_loss_step=586, train_loss_epoch=589]Epoch 13/400: 3%|β | 12/400 [00:02<01:03, 6.11it/s, v_num=1, train_loss_step=586, train_loss_epoch=589]Epoch 13/400: 3%|β | 13/400 [00:02<01:06, 5.84it/s, v_num=1, train_loss_step=586, train_loss_epoch=589]Epoch 13/400: 3%|β | 13/400 [00:02<01:06, 5.84it/s, v_num=1, train_loss_step=603, train_loss_epoch=587]Epoch 14/400: 3%|β | 13/400 [00:02<01:06, 5.84it/s, v_num=1, train_loss_step=603, train_loss_epoch=587]Epoch 14/400: 4%|β | 14/400 [00:02<01:08, 5.64it/s, v_num=1, train_loss_step=603, train_loss_epoch=587]Epoch 14/400: 4%|β | 14/400 [00:02<01:08, 5.64it/s, v_num=1, train_loss_step=575, train_loss_epoch=585]Epoch 15/400: 4%|β | 14/400 [00:02<01:08, 5.64it/s, v_num=1, train_loss_step=575, train_loss_epoch=585]Epoch 15/400: 4%|β | 15/400 [00:02<01:09, 5.58it/s, v_num=1, train_loss_step=575, train_loss_epoch=585]Epoch 15/400: 4%|β | 15/400 [00:02<01:09, 5.58it/s, v_num=1, train_loss_step=608, train_loss_epoch=583]Epoch 16/400: 4%|β | 15/400 [00:02<01:09, 5.58it/s, v_num=1, train_loss_step=608, train_loss_epoch=583]Epoch 16/400: 4%|β | 16/400 [00:03<01:09, 5.55it/s, v_num=1, train_loss_step=608, train_loss_epoch=583]Epoch 16/400: 4%|β | 16/400 [00:03<01:09, 5.55it/s, v_num=1, train_loss_step=601, train_loss_epoch=582]Epoch 17/400: 4%|β | 16/400 [00:03<01:09, 5.55it/s, v_num=1, train_loss_step=601, train_loss_epoch=582]Epoch 17/400: 4%|β | 17/400 [00:03<01:10, 5.42it/s, v_num=1, train_loss_step=601, train_loss_epoch=582]Epoch 17/400: 4%|β | 17/400 [00:03<01:10, 5.42it/s, v_num=1, train_loss_step=559, train_loss_epoch=581]Epoch 18/400: 4%|β | 17/400 [00:03<01:10, 5.42it/s, v_num=1, train_loss_step=559, train_loss_epoch=581]Epoch 18/400: 4%|β | 18/400 [00:03<01:10, 5.44it/s, v_num=1, train_loss_step=559, train_loss_epoch=581]Epoch 18/400: 4%|β | 18/400 [00:03<01:10, 5.44it/s, v_num=1, train_loss_step=562, train_loss_epoch=580]Epoch 19/400: 4%|β | 18/400 [00:03<01:10, 5.44it/s, v_num=1, train_loss_step=562, train_loss_epoch=580]Epoch 19/400: 5%|β | 19/400 [00:03<01:10, 5.41it/s, v_num=1, train_loss_step=562, train_loss_epoch=580]Epoch 19/400: 5%|β | 19/400 [00:03<01:10, 5.41it/s, v_num=1, train_loss_step=597, train_loss_epoch=578]Epoch 20/400: 5%|β | 19/400 [00:03<01:10, 5.41it/s, v_num=1, train_loss_step=597, train_loss_epoch=578]Epoch 20/400: 5%|β | 20/400 [00:03<01:07, 5.60it/s, v_num=1, train_loss_step=597, train_loss_epoch=578]Epoch 20/400: 5%|β | 20/400 [00:03<01:07, 5.60it/s, v_num=1, train_loss_step=546, train_loss_epoch=578]Epoch 21/400: 5%|β | 20/400 [00:03<01:07, 5.60it/s, v_num=1, train_loss_step=546, train_loss_epoch=578]Epoch 21/400: 5%|β | 21/400 [00:03<01:08, 5.50it/s, v_num=1, train_loss_step=546, train_loss_epoch=578]Epoch 21/400: 5%|β | 21/400 [00:03<01:08, 5.50it/s, v_num=1, train_loss_step=562, train_loss_epoch=577]Epoch 22/400: 5%|β | 21/400 [00:03<01:08, 5.50it/s, v_num=1, train_loss_step=562, train_loss_epoch=577]Epoch 22/400: 6%|β | 22/400 [00:04<01:07, 5.61it/s, v_num=1, train_loss_step=562, train_loss_epoch=577]Epoch 22/400: 6%|β | 22/400 [00:04<01:07, 5.61it/s, v_num=1, train_loss_step=573, train_loss_epoch=576]Epoch 23/400: 6%|β | 22/400 [00:04<01:07, 5.61it/s, v_num=1, train_loss_step=573, train_loss_epoch=576]Epoch 23/400: 6%|β | 23/400 [00:04<01:08, 5.51it/s, v_num=1, train_loss_step=573, train_loss_epoch=576]Epoch 23/400: 6%|β | 23/400 [00:04<01:08, 5.51it/s, v_num=1, train_loss_step=561, train_loss_epoch=575]Epoch 24/400: 6%|β | 23/400 [00:04<01:08, 5.51it/s, v_num=1, train_loss_step=561, train_loss_epoch=575]Epoch 24/400: 6%|β | 24/400 [00:04<01:08, 5.52it/s, v_num=1, train_loss_step=561, train_loss_epoch=575]Epoch 24/400: 6%|β | 24/400 [00:04<01:08, 5.52it/s, v_num=1, train_loss_step=556, train_loss_epoch=573]Epoch 25/400: 6%|β | 24/400 [00:04<01:08, 5.52it/s, v_num=1, train_loss_step=556, train_loss_epoch=573]Epoch 25/400: 6%|β | 25/400 [00:04<01:08, 5.46it/s, v_num=1, train_loss_step=556, train_loss_epoch=573]Epoch 25/400: 6%|β | 25/400 [00:04<01:08, 5.46it/s, v_num=1, train_loss_step=589, train_loss_epoch=573]Epoch 26/400: 6%|β | 25/400 [00:04<01:08, 5.46it/s, v_num=1, train_loss_step=589, train_loss_epoch=573]Epoch 26/400: 6%|β | 26/400 [00:04<01:07, 5.56it/s, v_num=1, train_loss_step=589, train_loss_epoch=573]Epoch 26/400: 6%|β | 26/400 [00:04<01:07, 5.56it/s, v_num=1, train_loss_step=606, train_loss_epoch=572]Epoch 27/400: 6%|β | 26/400 [00:04<01:07, 5.56it/s, v_num=1, train_loss_step=606, train_loss_epoch=572]Epoch 27/400: 7%|β | 27/400 [00:05<01:08, 5.46it/s, v_num=1, train_loss_step=606, train_loss_epoch=572]Epoch 27/400: 7%|β | 27/400 [00:05<01:08, 5.46it/s, v_num=1, train_loss_step=533, train_loss_epoch=572]Epoch 28/400: 7%|β | 27/400 [00:05<01:08, 5.46it/s, v_num=1, train_loss_step=533, train_loss_epoch=572]Epoch 28/400: 7%|β | 28/400 [00:05<01:10, 5.28it/s, v_num=1, train_loss_step=533, train_loss_epoch=572]Epoch 28/400: 7%|β | 28/400 [00:05<01:10, 5.28it/s, v_num=1, train_loss_step=544, train_loss_epoch=571]Epoch 29/400: 7%|β | 28/400 [00:05<01:10, 5.28it/s, v_num=1, train_loss_step=544, train_loss_epoch=571]Epoch 29/400: 7%|β | 29/400 [00:05<01:11, 5.18it/s, v_num=1, train_loss_step=544, train_loss_epoch=571]Epoch 29/400: 7%|β | 29/400 [00:05<01:11, 5.18it/s, v_num=1, train_loss_step=634, train_loss_epoch=570]Epoch 30/400: 7%|β | 29/400 [00:05<01:11, 5.18it/s, v_num=1, train_loss_step=634, train_loss_epoch=570]Epoch 30/400: 8%|β | 30/400 [00:05<01:11, 5.18it/s, v_num=1, train_loss_step=634, train_loss_epoch=570]Epoch 30/400: 8%|β | 30/400 [00:05<01:11, 5.18it/s, v_num=1, train_loss_step=574, train_loss_epoch=569]Epoch 31/400: 8%|β | 30/400 [00:05<01:11, 5.18it/s, v_num=1, train_loss_step=574, train_loss_epoch=569]Epoch 31/400: 8%|β | 31/400 [00:05<01:10, 5.24it/s, v_num=1, train_loss_step=574, train_loss_epoch=569]Epoch 31/400: 8%|β | 31/400 [00:05<01:10, 5.24it/s, v_num=1, train_loss_step=579, train_loss_epoch=569]Epoch 32/400: 8%|β | 31/400 [00:05<01:10, 5.24it/s, v_num=1, train_loss_step=579, train_loss_epoch=569]Epoch 32/400: 8%|β | 32/400 [00:05<01:06, 5.51it/s, v_num=1, train_loss_step=579, train_loss_epoch=569]Epoch 32/400: 8%|β | 32/400 [00:05<01:06, 5.51it/s, v_num=1, train_loss_step=577, train_loss_epoch=568]Epoch 33/400: 8%|β | 32/400 [00:05<01:06, 5.51it/s, v_num=1, train_loss_step=577, train_loss_epoch=568]Epoch 33/400: 8%|β | 33/400 [00:06<01:04, 5.71it/s, v_num=1, train_loss_step=577, train_loss_epoch=568]Epoch 33/400: 8%|β | 33/400 [00:06<01:04, 5.71it/s, v_num=1, train_loss_step=586, train_loss_epoch=567]Epoch 34/400: 8%|β | 33/400 [00:06<01:04, 5.71it/s, v_num=1, train_loss_step=586, train_loss_epoch=567]Epoch 34/400: 8%|β | 34/400 [00:06<01:02, 5.88it/s, v_num=1, train_loss_step=586, train_loss_epoch=567]Epoch 34/400: 8%|β | 34/400 [00:06<01:02, 5.88it/s, v_num=1, train_loss_step=559, train_loss_epoch=567]Epoch 35/400: 8%|β | 34/400 [00:06<01:02, 5.88it/s, v_num=1, train_loss_step=559, train_loss_epoch=567]Epoch 35/400: 9%|β | 35/400 [00:06<01:00, 6.02it/s, v_num=1, train_loss_step=559, train_loss_epoch=567]Epoch 35/400: 9%|β | 35/400 [00:06<01:00, 6.02it/s, v_num=1, train_loss_step=539, train_loss_epoch=566]Epoch 36/400: 9%|β | 35/400 [00:06<01:00, 6.02it/s, v_num=1, train_loss_step=539, train_loss_epoch=566]Epoch 36/400: 9%|β | 36/400 [00:06<00:59, 6.12it/s, v_num=1, train_loss_step=539, train_loss_epoch=566]Epoch 36/400: 9%|β | 36/400 [00:06<00:59, 6.12it/s, v_num=1, train_loss_step=564, train_loss_epoch=566]Epoch 37/400: 9%|β | 36/400 [00:06<00:59, 6.12it/s, v_num=1, train_loss_step=564, train_loss_epoch=566]Epoch 37/400: 9%|β | 37/400 [00:06<01:00, 6.03it/s, v_num=1, train_loss_step=564, train_loss_epoch=566]Epoch 37/400: 9%|β | 37/400 [00:06<01:00, 6.03it/s, v_num=1, train_loss_step=577, train_loss_epoch=565]Epoch 38/400: 9%|β | 37/400 [00:06<01:00, 6.03it/s, v_num=1, train_loss_step=577, train_loss_epoch=565]Epoch 38/400: 10%|β | 38/400 [00:06<01:00, 6.03it/s, v_num=1, train_loss_step=577, train_loss_epoch=565]Epoch 38/400: 10%|β | 38/400 [00:06<01:00, 6.03it/s, v_num=1, train_loss_step=564, train_loss_epoch=564]Epoch 39/400: 10%|β | 38/400 [00:06<01:00, 6.03it/s, v_num=1, train_loss_step=564, train_loss_epoch=564]Epoch 39/400: 10%|β | 39/400 [00:07<01:00, 6.02it/s, v_num=1, train_loss_step=564, train_loss_epoch=564]Epoch 39/400: 10%|β | 39/400 [00:07<01:00, 6.02it/s, v_num=1, train_loss_step=576, train_loss_epoch=564]Epoch 40/400: 10%|β | 39/400 [00:07<01:00, 6.02it/s, v_num=1, train_loss_step=576, train_loss_epoch=564]Epoch 40/400: 10%|β | 40/400 [00:07<01:02, 5.75it/s, v_num=1, train_loss_step=576, train_loss_epoch=564]Epoch 40/400: 10%|β | 40/400 [00:07<01:02, 5.75it/s, v_num=1, train_loss_step=543, train_loss_epoch=563]Epoch 41/400: 10%|β | 40/400 [00:07<01:02, 5.75it/s, v_num=1, train_loss_step=543, train_loss_epoch=563]Epoch 41/400: 10%|β | 41/400 [00:07<01:04, 5.61it/s, v_num=1, train_loss_step=543, train_loss_epoch=563]Epoch 41/400: 10%|β | 41/400 [00:07<01:04, 5.61it/s, v_num=1, train_loss_step=541, train_loss_epoch=563]Epoch 42/400: 10%|β | 41/400 [00:07<01:04, 5.61it/s, v_num=1, train_loss_step=541, train_loss_epoch=563]Epoch 42/400: 10%|β | 42/400 [00:07<01:05, 5.45it/s, v_num=1, train_loss_step=541, train_loss_epoch=563]Epoch 42/400: 10%|β | 42/400 [00:07<01:05, 5.45it/s, v_num=1, train_loss_step=592, train_loss_epoch=563]Epoch 43/400: 10%|β | 42/400 [00:07<01:05, 5.45it/s, v_num=1, train_loss_step=592, train_loss_epoch=563]Epoch 43/400: 11%|β | 43/400 [00:07<01:04, 5.53it/s, v_num=1, train_loss_step=592, train_loss_epoch=563]Epoch 43/400: 11%|β | 43/400 [00:07<01:04, 5.53it/s, v_num=1, train_loss_step=559, train_loss_epoch=562]Epoch 44/400: 11%|β | 43/400 [00:07<01:04, 5.53it/s, v_num=1, train_loss_step=559, train_loss_epoch=562]Epoch 44/400: 11%|β | 44/400 [00:08<01:02, 5.68it/s, v_num=1, train_loss_step=559, train_loss_epoch=562]Epoch 44/400: 11%|β | 44/400 [00:08<01:02, 5.68it/s, v_num=1, train_loss_step=571, train_loss_epoch=561]Epoch 45/400: 11%|β | 44/400 [00:08<01:02, 5.68it/s, v_num=1, train_loss_step=571, train_loss_epoch=561]Epoch 45/400: 11%|ββ | 45/400 [00:08<01:01, 5.80it/s, v_num=1, train_loss_step=571, train_loss_epoch=561]Epoch 45/400: 11%|ββ | 45/400 [00:08<01:01, 5.80it/s, v_num=1, train_loss_step=585, train_loss_epoch=561]Epoch 46/400: 11%|ββ | 45/400 [00:08<01:01, 5.80it/s, v_num=1, train_loss_step=585, train_loss_epoch=561]Epoch 46/400: 12%|ββ | 46/400 [00:08<00:59, 5.91it/s, v_num=1, train_loss_step=585, train_loss_epoch=561]Epoch 46/400: 12%|ββ | 46/400 [00:08<00:59, 5.91it/s, v_num=1, train_loss_step=571, train_loss_epoch=560]Epoch 47/400: 12%|ββ | 46/400 [00:08<00:59, 5.91it/s, v_num=1, train_loss_step=571, train_loss_epoch=560]Epoch 47/400: 12%|ββ | 47/400 [00:08<00:59, 5.89it/s, v_num=1, train_loss_step=571, train_loss_epoch=560]Epoch 47/400: 12%|ββ | 47/400 [00:08<00:59, 5.89it/s, v_num=1, train_loss_step=556, train_loss_epoch=560]Epoch 48/400: 12%|ββ | 47/400 [00:08<00:59, 5.89it/s, v_num=1, train_loss_step=556, train_loss_epoch=560]Epoch 48/400: 12%|ββ | 48/400 [00:08<00:59, 5.93it/s, v_num=1, train_loss_step=556, train_loss_epoch=560]Epoch 48/400: 12%|ββ | 48/400 [00:08<00:59, 5.93it/s, v_num=1, train_loss_step=562, train_loss_epoch=560]Epoch 49/400: 12%|ββ | 48/400 [00:08<00:59, 5.93it/s, v_num=1, train_loss_step=562, train_loss_epoch=560]Epoch 49/400: 12%|ββ | 49/400 [00:08<00:58, 6.00it/s, v_num=1, train_loss_step=562, train_loss_epoch=560]Epoch 49/400: 12%|ββ | 49/400 [00:08<00:58, 6.00it/s, v_num=1, train_loss_step=565, train_loss_epoch=559]Epoch 50/400: 12%|ββ | 49/400 [00:08<00:58, 6.00it/s, v_num=1, train_loss_step=565, train_loss_epoch=559]Epoch 50/400: 12%|ββ | 50/400 [00:09<01:00, 5.77it/s, v_num=1, train_loss_step=565, train_loss_epoch=559]Epoch 50/400: 12%|ββ | 50/400 [00:09<01:00, 5.77it/s, v_num=1, train_loss_step=594, train_loss_epoch=559]Epoch 51/400: 12%|ββ | 50/400 [00:09<01:00, 5.77it/s, v_num=1, train_loss_step=594, train_loss_epoch=559]Epoch 51/400: 13%|ββ | 51/400 [00:09<01:00, 5.74it/s, v_num=1, train_loss_step=594, train_loss_epoch=559]Epoch 51/400: 13%|ββ | 51/400 [00:09<01:00, 5.74it/s, v_num=1, train_loss_step=548, train_loss_epoch=558]Epoch 52/400: 13%|ββ | 51/400 [00:09<01:00, 5.74it/s, v_num=1, train_loss_step=548, train_loss_epoch=558]Epoch 52/400: 13%|ββ | 52/400 [00:09<01:01, 5.66it/s, v_num=1, train_loss_step=548, train_loss_epoch=558]Epoch 52/400: 13%|ββ | 52/400 [00:09<01:01, 5.66it/s, v_num=1, train_loss_step=567, train_loss_epoch=558]Epoch 53/400: 13%|ββ | 52/400 [00:09<01:01, 5.66it/s, v_num=1, train_loss_step=567, train_loss_epoch=558]Epoch 53/400: 13%|ββ | 53/400 [00:09<01:02, 5.58it/s, v_num=1, train_loss_step=567, train_loss_epoch=558]Epoch 53/400: 13%|ββ | 53/400 [00:09<01:02, 5.58it/s, v_num=1, train_loss_step=559, train_loss_epoch=558]Epoch 54/400: 13%|ββ | 53/400 [00:09<01:02, 5.58it/s, v_num=1, train_loss_step=559, train_loss_epoch=558]Epoch 54/400: 14%|ββ | 54/400 [00:09<01:02, 5.54it/s, v_num=1, train_loss_step=559, train_loss_epoch=558]Epoch 54/400: 14%|ββ | 54/400 [00:09<01:02, 5.54it/s, v_num=1, train_loss_step=536, train_loss_epoch=557]Epoch 55/400: 14%|ββ | 54/400 [00:09<01:02, 5.54it/s, v_num=1, train_loss_step=536, train_loss_epoch=557]Epoch 55/400: 14%|ββ | 55/400 [00:09<01:00, 5.75it/s, v_num=1, train_loss_step=536, train_loss_epoch=557]Epoch 55/400: 14%|ββ | 55/400 [00:09<01:00, 5.75it/s, v_num=1, train_loss_step=535, train_loss_epoch=557]Epoch 56/400: 14%|ββ | 55/400 [00:09<01:00, 5.75it/s, v_num=1, train_loss_step=535, train_loss_epoch=557]Epoch 56/400: 14%|ββ | 56/400 [00:10<00:59, 5.77it/s, v_num=1, train_loss_step=535, train_loss_epoch=557]Epoch 56/400: 14%|ββ | 56/400 [00:10<00:59, 5.77it/s, v_num=1, train_loss_step=551, train_loss_epoch=556]Epoch 57/400: 14%|ββ | 56/400 [00:10<00:59, 5.77it/s, v_num=1, train_loss_step=551, train_loss_epoch=556]Epoch 57/400: 14%|ββ | 57/400 [00:10<00:59, 5.81it/s, v_num=1, train_loss_step=551, train_loss_epoch=556]Epoch 57/400: 14%|ββ | 57/400 [00:10<00:59, 5.81it/s, v_num=1, train_loss_step=556, train_loss_epoch=556]Epoch 58/400: 14%|ββ | 57/400 [00:10<00:59, 5.81it/s, v_num=1, train_loss_step=556, train_loss_epoch=556]Epoch 58/400: 14%|ββ | 58/400 [00:10<01:00, 5.70it/s, v_num=1, train_loss_step=556, train_loss_epoch=556]Epoch 58/400: 14%|ββ | 58/400 [00:10<01:00, 5.70it/s, v_num=1, train_loss_step=573, train_loss_epoch=555]Epoch 59/400: 14%|ββ | 58/400 [00:10<01:00, 5.70it/s, v_num=1, train_loss_step=573, train_loss_epoch=555]Epoch 59/400: 15%|ββ | 59/400 [00:10<01:02, 5.43it/s, v_num=1, train_loss_step=573, train_loss_epoch=555]Epoch 59/400: 15%|ββ | 59/400 [00:10<01:02, 5.43it/s, v_num=1, train_loss_step=541, train_loss_epoch=555]Epoch 60/400: 15%|ββ | 59/400 [00:10<01:02, 5.43it/s, v_num=1, train_loss_step=541, train_loss_epoch=555]Epoch 60/400: 15%|ββ | 60/400 [00:10<01:03, 5.33it/s, v_num=1, train_loss_step=541, train_loss_epoch=555]Epoch 60/400: 15%|ββ | 60/400 [00:10<01:03, 5.33it/s, v_num=1, train_loss_step=565, train_loss_epoch=554]Epoch 61/400: 15%|ββ | 60/400 [00:10<01:03, 5.33it/s, v_num=1, train_loss_step=565, train_loss_epoch=554]Epoch 61/400: 15%|ββ | 61/400 [00:11<01:01, 5.47it/s, v_num=1, train_loss_step=565, train_loss_epoch=554]Epoch 61/400: 15%|ββ | 61/400 [00:11<01:01, 5.47it/s, v_num=1, train_loss_step=568, train_loss_epoch=554]Epoch 62/400: 15%|ββ | 61/400 [00:11<01:01, 5.47it/s, v_num=1, train_loss_step=568, train_loss_epoch=554]Epoch 62/400: 16%|ββ | 62/400 [00:11<01:00, 5.63it/s, v_num=1, train_loss_step=568, train_loss_epoch=554]Epoch 62/400: 16%|ββ | 62/400 [00:11<01:00, 5.63it/s, v_num=1, train_loss_step=556, train_loss_epoch=554]Epoch 63/400: 16%|ββ | 62/400 [00:11<01:00, 5.63it/s, v_num=1, train_loss_step=556, train_loss_epoch=554]Epoch 63/400: 16%|ββ | 63/400 [00:11<01:00, 5.56it/s, v_num=1, train_loss_step=556, train_loss_epoch=554]Epoch 63/400: 16%|ββ | 63/400 [00:11<01:00, 5.56it/s, v_num=1, train_loss_step=545, train_loss_epoch=554]Epoch 64/400: 16%|ββ | 63/400 [00:11<01:00, 5.56it/s, v_num=1, train_loss_step=545, train_loss_epoch=554]Epoch 64/400: 16%|ββ | 64/400 [00:11<00:59, 5.62it/s, v_num=1, train_loss_step=545, train_loss_epoch=554]Epoch 64/400: 16%|ββ | 64/400 [00:11<00:59, 5.62it/s, v_num=1, train_loss_step=577, train_loss_epoch=553]Epoch 65/400: 16%|ββ | 64/400 [00:11<00:59, 5.62it/s, v_num=1, train_loss_step=577, train_loss_epoch=553]Epoch 65/400: 16%|ββ | 65/400 [00:11<00:58, 5.70it/s, v_num=1, train_loss_step=577, train_loss_epoch=553]Epoch 65/400: 16%|ββ | 65/400 [00:11<00:58, 5.70it/s, v_num=1, train_loss_step=536, train_loss_epoch=553]Epoch 66/400: 16%|ββ | 65/400 [00:11<00:58, 5.70it/s, v_num=1, train_loss_step=536, train_loss_epoch=553]Epoch 66/400: 16%|ββ | 66/400 [00:11<00:58, 5.74it/s, v_num=1, train_loss_step=536, train_loss_epoch=553]Epoch 66/400: 16%|ββ | 66/400 [00:11<00:58, 5.74it/s, v_num=1, train_loss_step=553, train_loss_epoch=553]Epoch 67/400: 16%|ββ | 66/400 [00:11<00:58, 5.74it/s, v_num=1, train_loss_step=553, train_loss_epoch=553]Epoch 67/400: 17%|ββ | 67/400 [00:12<00:57, 5.83it/s, v_num=1, train_loss_step=553, train_loss_epoch=553]Epoch 67/400: 17%|ββ | 67/400 [00:12<00:57, 5.83it/s, v_num=1, train_loss_step=605, train_loss_epoch=552]Epoch 68/400: 17%|ββ | 67/400 [00:12<00:57, 5.83it/s, v_num=1, train_loss_step=605, train_loss_epoch=552]Epoch 68/400: 17%|ββ | 68/400 [00:12<00:59, 5.61it/s, v_num=1, train_loss_step=605, train_loss_epoch=552]Epoch 68/400: 17%|ββ | 68/400 [00:12<00:59, 5.61it/s, v_num=1, train_loss_step=556, train_loss_epoch=552]Epoch 69/400: 17%|ββ | 68/400 [00:12<00:59, 5.61it/s, v_num=1, train_loss_step=556, train_loss_epoch=552]Epoch 69/400: 17%|ββ | 69/400 [00:12<00:59, 5.56it/s, v_num=1, train_loss_step=556, train_loss_epoch=552]Epoch 69/400: 17%|ββ | 69/400 [00:12<00:59, 5.56it/s, v_num=1, train_loss_step=525, train_loss_epoch=551]Epoch 70/400: 17%|ββ | 69/400 [00:12<00:59, 5.56it/s, v_num=1, train_loss_step=525, train_loss_epoch=551]Epoch 70/400: 18%|ββ | 70/400 [00:12<01:00, 5.47it/s, v_num=1, train_loss_step=525, train_loss_epoch=551]Epoch 70/400: 18%|ββ | 70/400 [00:12<01:00, 5.47it/s, v_num=1, train_loss_step=566, train_loss_epoch=551]Epoch 71/400: 18%|ββ | 70/400 [00:12<01:00, 5.47it/s, v_num=1, train_loss_step=566, train_loss_epoch=551]Epoch 71/400: 18%|ββ | 71/400 [00:12<00:57, 5.68it/s, v_num=1, train_loss_step=566, train_loss_epoch=551]Epoch 71/400: 18%|ββ | 71/400 [00:12<00:57, 5.68it/s, v_num=1, train_loss_step=544, train_loss_epoch=551]Epoch 72/400: 18%|ββ | 71/400 [00:12<00:57, 5.68it/s, v_num=1, train_loss_step=544, train_loss_epoch=551]Epoch 72/400: 18%|ββ | 72/400 [00:12<00:55, 5.87it/s, v_num=1, train_loss_step=544, train_loss_epoch=551]Epoch 72/400: 18%|ββ | 72/400 [00:12<00:55, 5.87it/s, v_num=1, train_loss_step=573, train_loss_epoch=551]Epoch 73/400: 18%|ββ | 72/400 [00:12<00:55, 5.87it/s, v_num=1, train_loss_step=573, train_loss_epoch=551]Epoch 73/400: 18%|ββ | 73/400 [00:13<00:54, 6.02it/s, v_num=1, train_loss_step=573, train_loss_epoch=551]Epoch 73/400: 18%|ββ | 73/400 [00:13<00:54, 6.02it/s, v_num=1, train_loss_step=550, train_loss_epoch=550]Epoch 74/400: 18%|ββ | 73/400 [00:13<00:54, 6.02it/s, v_num=1, train_loss_step=550, train_loss_epoch=550]Epoch 74/400: 18%|ββ | 74/400 [00:13<00:53, 6.08it/s, v_num=1, train_loss_step=550, train_loss_epoch=550]Epoch 74/400: 18%|ββ | 74/400 [00:13<00:53, 6.08it/s, v_num=1, train_loss_step=542, train_loss_epoch=550]Epoch 75/400: 18%|ββ | 74/400 [00:13<00:53, 6.08it/s, v_num=1, train_loss_step=542, train_loss_epoch=550]Epoch 75/400: 19%|ββ | 75/400 [00:13<00:54, 5.93it/s, v_num=1, train_loss_step=542, train_loss_epoch=550]Epoch 75/400: 19%|ββ | 75/400 [00:13<00:54, 5.93it/s, v_num=1, train_loss_step=537, train_loss_epoch=550]Epoch 76/400: 19%|ββ | 75/400 [00:13<00:54, 5.93it/s, v_num=1, train_loss_step=537, train_loss_epoch=550]Epoch 76/400: 19%|ββ | 76/400 [00:13<00:54, 5.92it/s, v_num=1, train_loss_step=537, train_loss_epoch=550]Epoch 76/400: 19%|ββ | 76/400 [00:13<00:54, 5.92it/s, v_num=1, train_loss_step=521, train_loss_epoch=549]Epoch 77/400: 19%|ββ | 76/400 [00:13<00:54, 5.92it/s, v_num=1, train_loss_step=521, train_loss_epoch=549]Epoch 77/400: 19%|ββ | 77/400 [00:13<00:54, 5.96it/s, v_num=1, train_loss_step=521, train_loss_epoch=549]Epoch 77/400: 19%|ββ | 77/400 [00:13<00:54, 5.96it/s, v_num=1, train_loss_step=572, train_loss_epoch=549]Epoch 78/400: 19%|ββ | 77/400 [00:13<00:54, 5.96it/s, v_num=1, train_loss_step=572, train_loss_epoch=549]Epoch 78/400: 20%|ββ | 78/400 [00:13<00:52, 6.11it/s, v_num=1, train_loss_step=572, train_loss_epoch=549]Epoch 78/400: 20%|ββ | 78/400 [00:13<00:52, 6.11it/s, v_num=1, train_loss_step=556, train_loss_epoch=548]Epoch 79/400: 20%|ββ | 78/400 [00:13<00:52, 6.11it/s, v_num=1, train_loss_step=556, train_loss_epoch=548]Epoch 79/400: 20%|ββ | 79/400 [00:14<00:51, 6.18it/s, v_num=1, train_loss_step=556, train_loss_epoch=548]Epoch 79/400: 20%|ββ | 79/400 [00:14<00:51, 6.18it/s, v_num=1, train_loss_step=541, train_loss_epoch=548]Epoch 80/400: 20%|ββ | 79/400 [00:14<00:51, 6.18it/s, v_num=1, train_loss_step=541, train_loss_epoch=548]Epoch 80/400: 20%|ββ | 80/400 [00:14<00:51, 6.20it/s, v_num=1, train_loss_step=541, train_loss_epoch=548]Epoch 80/400: 20%|ββ | 80/400 [00:14<00:51, 6.20it/s, v_num=1, train_loss_step=564, train_loss_epoch=548]Epoch 81/400: 20%|ββ | 80/400 [00:14<00:51, 6.20it/s, v_num=1, train_loss_step=564, train_loss_epoch=548]Epoch 81/400: 20%|ββ | 81/400 [00:14<00:51, 6.14it/s, v_num=1, train_loss_step=564, train_loss_epoch=548]Epoch 81/400: 20%|ββ | 81/400 [00:14<00:51, 6.14it/s, v_num=1, train_loss_step=534, train_loss_epoch=548]Epoch 82/400: 20%|ββ | 81/400 [00:14<00:51, 6.14it/s, v_num=1, train_loss_step=534, train_loss_epoch=548]Epoch 82/400: 20%|ββ | 82/400 [00:14<00:51, 6.13it/s, v_num=1, train_loss_step=534, train_loss_epoch=548]Epoch 82/400: 20%|ββ | 82/400 [00:14<00:51, 6.13it/s, v_num=1, train_loss_step=558, train_loss_epoch=547]Epoch 83/400: 20%|ββ | 82/400 [00:14<00:51, 6.13it/s, v_num=1, train_loss_step=558, train_loss_epoch=547]Epoch 83/400: 21%|ββ | 83/400 [00:14<00:52, 6.06it/s, v_num=1, train_loss_step=558, train_loss_epoch=547]Epoch 83/400: 21%|ββ | 83/400 [00:14<00:52, 6.06it/s, v_num=1, train_loss_step=543, train_loss_epoch=547]Epoch 84/400: 21%|ββ | 83/400 [00:14<00:52, 6.06it/s, v_num=1, train_loss_step=543, train_loss_epoch=547]Epoch 84/400: 21%|ββ | 84/400 [00:14<00:53, 5.95it/s, v_num=1, train_loss_step=543, train_loss_epoch=547]Epoch 84/400: 21%|ββ | 84/400 [00:14<00:53, 5.95it/s, v_num=1, train_loss_step=529, train_loss_epoch=547]Epoch 85/400: 21%|ββ | 84/400 [00:14<00:53, 5.95it/s, v_num=1, train_loss_step=529, train_loss_epoch=547]Epoch 85/400: 21%|βββ | 85/400 [00:15<00:54, 5.81it/s, v_num=1, train_loss_step=529, train_loss_epoch=547]Epoch 85/400: 21%|βββ | 85/400 [00:15<00:54, 5.81it/s, v_num=1, train_loss_step=532, train_loss_epoch=547]Epoch 86/400: 21%|βββ | 85/400 [00:15<00:54, 5.81it/s, v_num=1, train_loss_step=532, train_loss_epoch=547]Epoch 86/400: 22%|βββ | 86/400 [00:15<00:55, 5.64it/s, v_num=1, train_loss_step=532, train_loss_epoch=547]Epoch 86/400: 22%|βββ | 86/400 [00:15<00:55, 5.64it/s, v_num=1, train_loss_step=524, train_loss_epoch=546]Epoch 87/400: 22%|βββ | 86/400 [00:15<00:55, 5.64it/s, v_num=1, train_loss_step=524, train_loss_epoch=546]Epoch 87/400: 22%|βββ | 87/400 [00:15<00:55, 5.61it/s, v_num=1, train_loss_step=524, train_loss_epoch=546]Epoch 87/400: 22%|βββ | 87/400 [00:15<00:55, 5.61it/s, v_num=1, train_loss_step=580, train_loss_epoch=546]Epoch 88/400: 22%|βββ | 87/400 [00:15<00:55, 5.61it/s, v_num=1, train_loss_step=580, train_loss_epoch=546]Epoch 88/400: 22%|βββ | 88/400 [00:15<00:53, 5.78it/s, v_num=1, train_loss_step=580, train_loss_epoch=546]Epoch 88/400: 22%|βββ | 88/400 [00:15<00:53, 5.78it/s, v_num=1, train_loss_step=565, train_loss_epoch=545]Epoch 89/400: 22%|βββ | 88/400 [00:15<00:53, 5.78it/s, v_num=1, train_loss_step=565, train_loss_epoch=545]Epoch 89/400: 22%|βββ | 89/400 [00:15<00:52, 5.89it/s, v_num=1, train_loss_step=565, train_loss_epoch=545]Epoch 89/400: 22%|βββ | 89/400 [00:15<00:52, 5.89it/s, v_num=1, train_loss_step=569, train_loss_epoch=545]Epoch 90/400: 22%|βββ | 89/400 [00:15<00:52, 5.89it/s, v_num=1, train_loss_step=569, train_loss_epoch=545]Epoch 90/400: 22%|βββ | 90/400 [00:15<00:51, 5.99it/s, v_num=1, train_loss_step=569, train_loss_epoch=545]Epoch 90/400: 22%|βββ | 90/400 [00:15<00:51, 5.99it/s, v_num=1, train_loss_step=551, train_loss_epoch=545]Epoch 91/400: 22%|βββ | 90/400 [00:15<00:51, 5.99it/s, v_num=1, train_loss_step=551, train_loss_epoch=545]Epoch 91/400: 23%|βββ | 91/400 [00:16<00:50, 6.09it/s, v_num=1, train_loss_step=551, train_loss_epoch=545]Epoch 91/400: 23%|βββ | 91/400 [00:16<00:50, 6.09it/s, v_num=1, train_loss_step=532, train_loss_epoch=545]Epoch 92/400: 23%|βββ | 91/400 [00:16<00:50, 6.09it/s, v_num=1, train_loss_step=532, train_loss_epoch=545]Epoch 92/400: 23%|βββ | 92/400 [00:16<00:51, 6.00it/s, v_num=1, train_loss_step=532, train_loss_epoch=545]Epoch 92/400: 23%|βββ | 92/400 [00:16<00:51, 6.00it/s, v_num=1, train_loss_step=529, train_loss_epoch=544]Epoch 93/400: 23%|βββ | 92/400 [00:16<00:51, 6.00it/s, v_num=1, train_loss_step=529, train_loss_epoch=544]Epoch 93/400: 23%|βββ | 93/400 [00:16<00:51, 6.00it/s, v_num=1, train_loss_step=529, train_loss_epoch=544]Epoch 93/400: 23%|βββ | 93/400 [00:16<00:51, 6.00it/s, v_num=1, train_loss_step=517, train_loss_epoch=544]Epoch 94/400: 23%|βββ | 93/400 [00:16<00:51, 6.00it/s, v_num=1, train_loss_step=517, train_loss_epoch=544]Epoch 94/400: 24%|βββ | 94/400 [00:16<00:51, 5.99it/s, v_num=1, train_loss_step=517, train_loss_epoch=544]Epoch 94/400: 24%|βββ | 94/400 [00:16<00:51, 5.99it/s, v_num=1, train_loss_step=558, train_loss_epoch=544]Epoch 95/400: 24%|βββ | 94/400 [00:16<00:51, 5.99it/s, v_num=1, train_loss_step=558, train_loss_epoch=544]Epoch 95/400: 24%|βββ | 95/400 [00:16<00:50, 6.05it/s, v_num=1, train_loss_step=558, train_loss_epoch=544]Epoch 95/400: 24%|βββ | 95/400 [00:16<00:50, 6.05it/s, v_num=1, train_loss_step=542, train_loss_epoch=544]Epoch 96/400: 24%|βββ | 95/400 [00:16<00:50, 6.05it/s, v_num=1, train_loss_step=542, train_loss_epoch=544]Epoch 96/400: 24%|βββ | 96/400 [00:16<00:50, 6.08it/s, v_num=1, train_loss_step=542, train_loss_epoch=544]Epoch 96/400: 24%|βββ | 96/400 [00:16<00:50, 6.08it/s, v_num=1, train_loss_step=535, train_loss_epoch=543]Epoch 97/400: 24%|βββ | 96/400 [00:16<00:50, 6.08it/s, v_num=1, train_loss_step=535, train_loss_epoch=543]Epoch 97/400: 24%|βββ | 97/400 [00:17<00:51, 5.89it/s, v_num=1, train_loss_step=535, train_loss_epoch=543]Epoch 97/400: 24%|βββ | 97/400 [00:17<00:51, 5.89it/s, v_num=1, train_loss_step=525, train_loss_epoch=543]Epoch 98/400: 24%|βββ | 97/400 [00:17<00:51, 5.89it/s, v_num=1, train_loss_step=525, train_loss_epoch=543]Epoch 98/400: 24%|βββ | 98/400 [00:17<00:51, 5.90it/s, v_num=1, train_loss_step=525, train_loss_epoch=543]Epoch 98/400: 24%|βββ | 98/400 [00:17<00:51, 5.90it/s, v_num=1, train_loss_step=564, train_loss_epoch=542]Epoch 99/400: 24%|βββ | 98/400 [00:17<00:51, 5.90it/s, v_num=1, train_loss_step=564, train_loss_epoch=542]Epoch 99/400: 25%|βββ | 99/400 [00:17<00:51, 5.80it/s, v_num=1, train_loss_step=564, train_loss_epoch=542]Epoch 99/400: 25%|βββ | 99/400 [00:17<00:51, 5.80it/s, v_num=1, train_loss_step=549, train_loss_epoch=542]Epoch 100/400: 25%|βββ | 99/400 [00:17<00:51, 5.80it/s, v_num=1, train_loss_step=549, train_loss_epoch=542]Epoch 100/400: 25%|βββ | 100/400 [00:17<00:51, 5.79it/s, v_num=1, train_loss_step=549, train_loss_epoch=542]Epoch 100/400: 25%|βββ | 100/400 [00:17<00:51, 5.79it/s, v_num=1, train_loss_step=542, train_loss_epoch=542]Epoch 101/400: 25%|βββ | 100/400 [00:17<00:51, 5.79it/s, v_num=1, train_loss_step=542, train_loss_epoch=542]Epoch 101/400: 25%|βββ | 101/400 [00:17<00:53, 5.64it/s, v_num=1, train_loss_step=542, train_loss_epoch=542]Epoch 101/400: 25%|βββ | 101/400 [00:17<00:53, 5.64it/s, v_num=1, train_loss_step=537, train_loss_epoch=542]Epoch 102/400: 25%|βββ | 101/400 [00:17<00:53, 5.64it/s, v_num=1, train_loss_step=537, train_loss_epoch=542]Epoch 102/400: 26%|βββ | 102/400 [00:18<00:52, 5.67it/s, v_num=1, train_loss_step=537, train_loss_epoch=542]Epoch 102/400: 26%|βββ | 102/400 [00:18<00:52, 5.67it/s, v_num=1, train_loss_step=537, train_loss_epoch=541]Epoch 103/400: 26%|βββ | 102/400 [00:18<00:52, 5.67it/s, v_num=1, train_loss_step=537, train_loss_epoch=541]Epoch 103/400: 26%|βββ | 103/400 [00:18<00:51, 5.75it/s, v_num=1, train_loss_step=537, train_loss_epoch=541]Epoch 103/400: 26%|βββ | 103/400 [00:18<00:51, 5.75it/s, v_num=1, train_loss_step=556, train_loss_epoch=542]Epoch 104/400: 26%|βββ | 103/400 [00:18<00:51, 5.75it/s, v_num=1, train_loss_step=556, train_loss_epoch=542]Epoch 104/400: 26%|βββ | 104/400 [00:18<00:52, 5.61it/s, v_num=1, train_loss_step=556, train_loss_epoch=542]Epoch 104/400: 26%|βββ | 104/400 [00:18<00:52, 5.61it/s, v_num=1, train_loss_step=557, train_loss_epoch=541]Epoch 105/400: 26%|βββ | 104/400 [00:18<00:52, 5.61it/s, v_num=1, train_loss_step=557, train_loss_epoch=541]Epoch 105/400: 26%|βββ | 105/400 [00:18<00:51, 5.70it/s, v_num=1, train_loss_step=557, train_loss_epoch=541]Epoch 105/400: 26%|βββ | 105/400 [00:18<00:51, 5.70it/s, v_num=1, train_loss_step=523, train_loss_epoch=541]Epoch 106/400: 26%|βββ | 105/400 [00:18<00:51, 5.70it/s, v_num=1, train_loss_step=523, train_loss_epoch=541]Epoch 106/400: 26%|βββ | 106/400 [00:18<00:50, 5.77it/s, v_num=1, train_loss_step=523, train_loss_epoch=541]Epoch 106/400: 26%|βββ | 106/400 [00:18<00:50, 5.77it/s, v_num=1, train_loss_step=537, train_loss_epoch=540]Epoch 107/400: 26%|βββ | 106/400 [00:18<00:50, 5.77it/s, v_num=1, train_loss_step=537, train_loss_epoch=540]Epoch 107/400: 27%|βββ | 107/400 [00:18<00:52, 5.59it/s, v_num=1, train_loss_step=537, train_loss_epoch=540]Epoch 107/400: 27%|βββ | 107/400 [00:18<00:52, 5.59it/s, v_num=1, train_loss_step=548, train_loss_epoch=541]Epoch 108/400: 27%|βββ | 107/400 [00:18<00:52, 5.59it/s, v_num=1, train_loss_step=548, train_loss_epoch=541]Epoch 108/400: 27%|βββ | 108/400 [00:19<00:52, 5.58it/s, v_num=1, train_loss_step=548, train_loss_epoch=541]Epoch 108/400: 27%|βββ | 108/400 [00:19<00:52, 5.58it/s, v_num=1, train_loss_step=532, train_loss_epoch=540]Epoch 109/400: 27%|βββ | 108/400 [00:19<00:52, 5.58it/s, v_num=1, train_loss_step=532, train_loss_epoch=540]Epoch 109/400: 27%|βββ | 109/400 [00:19<00:53, 5.44it/s, v_num=1, train_loss_step=532, train_loss_epoch=540]Epoch 109/400: 27%|βββ | 109/400 [00:19<00:53, 5.44it/s, v_num=1, train_loss_step=557, train_loss_epoch=539]Epoch 110/400: 27%|βββ | 109/400 [00:19<00:53, 5.44it/s, v_num=1, train_loss_step=557, train_loss_epoch=539]Epoch 110/400: 28%|βββ | 110/400 [00:19<00:52, 5.52it/s, v_num=1, train_loss_step=557, train_loss_epoch=539]Epoch 110/400: 28%|βββ | 110/400 [00:19<00:52, 5.52it/s, v_num=1, train_loss_step=572, train_loss_epoch=539]Epoch 111/400: 28%|βββ | 110/400 [00:19<00:52, 5.52it/s, v_num=1, train_loss_step=572, train_loss_epoch=539]Epoch 111/400: 28%|βββ | 111/400 [00:19<00:52, 5.51it/s, v_num=1, train_loss_step=572, train_loss_epoch=539]Epoch 111/400: 28%|βββ | 111/400 [00:19<00:52, 5.51it/s, v_num=1, train_loss_step=575, train_loss_epoch=539]Epoch 112/400: 28%|βββ | 111/400 [00:19<00:52, 5.51it/s, v_num=1, train_loss_step=575, train_loss_epoch=539]Epoch 112/400: 28%|βββ | 112/400 [00:19<00:52, 5.53it/s, v_num=1, train_loss_step=575, train_loss_epoch=539]Epoch 112/400: 28%|βββ | 112/400 [00:19<00:52, 5.53it/s, v_num=1, train_loss_step=522, train_loss_epoch=539]Epoch 113/400: 28%|βββ | 112/400 [00:19<00:52, 5.53it/s, v_num=1, train_loss_step=522, train_loss_epoch=539]Epoch 113/400: 28%|βββ | 113/400 [00:19<00:52, 5.49it/s, v_num=1, train_loss_step=522, train_loss_epoch=539]Epoch 113/400: 28%|βββ | 113/400 [00:19<00:52, 5.49it/s, v_num=1, train_loss_step=574, train_loss_epoch=539]Epoch 114/400: 28%|βββ | 113/400 [00:19<00:52, 5.49it/s, v_num=1, train_loss_step=574, train_loss_epoch=539]Epoch 114/400: 28%|βββ | 114/400 [00:20<00:52, 5.48it/s, v_num=1, train_loss_step=574, train_loss_epoch=539]Epoch 114/400: 28%|βββ | 114/400 [00:20<00:52, 5.48it/s, v_num=1, train_loss_step=566, train_loss_epoch=539]Epoch 115/400: 28%|βββ | 114/400 [00:20<00:52, 5.48it/s, v_num=1, train_loss_step=566, train_loss_epoch=539]Epoch 115/400: 29%|βββ | 115/400 [00:20<00:53, 5.33it/s, v_num=1, train_loss_step=566, train_loss_epoch=539]Epoch 115/400: 29%|βββ | 115/400 [00:20<00:53, 5.33it/s, v_num=1, train_loss_step=566, train_loss_epoch=538]Epoch 116/400: 29%|βββ | 115/400 [00:20<00:53, 5.33it/s, v_num=1, train_loss_step=566, train_loss_epoch=538]Epoch 116/400: 29%|βββ | 116/400 [00:20<00:52, 5.43it/s, v_num=1, train_loss_step=566, train_loss_epoch=538]Epoch 116/400: 29%|βββ | 116/400 [00:20<00:52, 5.43it/s, v_num=1, train_loss_step=514, train_loss_epoch=538]Epoch 117/400: 29%|βββ | 116/400 [00:20<00:52, 5.43it/s, v_num=1, train_loss_step=514, train_loss_epoch=538]Epoch 117/400: 29%|βββ | 117/400 [00:20<00:53, 5.26it/s, v_num=1, train_loss_step=514, train_loss_epoch=538]Epoch 117/400: 29%|βββ | 117/400 [00:20<00:53, 5.26it/s, v_num=1, train_loss_step=566, train_loss_epoch=538]Epoch 118/400: 29%|βββ | 117/400 [00:20<00:53, 5.26it/s, v_num=1, train_loss_step=566, train_loss_epoch=538]Epoch 118/400: 30%|βββ | 118/400 [00:20<00:55, 5.11it/s, v_num=1, train_loss_step=566, train_loss_epoch=538]Epoch 118/400: 30%|βββ | 118/400 [00:20<00:55, 5.11it/s, v_num=1, train_loss_step=582, train_loss_epoch=537]Epoch 119/400: 30%|βββ | 118/400 [00:20<00:55, 5.11it/s, v_num=1, train_loss_step=582, train_loss_epoch=537]Epoch 119/400: 30%|βββ | 119/400 [00:21<00:55, 5.10it/s, v_num=1, train_loss_step=582, train_loss_epoch=537]Epoch 119/400: 30%|βββ | 119/400 [00:21<00:55, 5.10it/s, v_num=1, train_loss_step=581, train_loss_epoch=538]Epoch 120/400: 30%|βββ | 119/400 [00:21<00:55, 5.10it/s, v_num=1, train_loss_step=581, train_loss_epoch=538]Epoch 120/400: 30%|βββ | 120/400 [00:21<00:54, 5.09it/s, v_num=1, train_loss_step=581, train_loss_epoch=538]Epoch 120/400: 30%|βββ | 120/400 [00:21<00:54, 5.09it/s, v_num=1, train_loss_step=549, train_loss_epoch=537]Epoch 121/400: 30%|βββ | 120/400 [00:21<00:54, 5.09it/s, v_num=1, train_loss_step=549, train_loss_epoch=537]Epoch 121/400: 30%|βββ | 121/400 [00:21<00:51, 5.37it/s, v_num=1, train_loss_step=549, train_loss_epoch=537]Epoch 121/400: 30%|βββ | 121/400 [00:21<00:51, 5.37it/s, v_num=1, train_loss_step=521, train_loss_epoch=537]Epoch 122/400: 30%|βββ | 121/400 [00:21<00:51, 5.37it/s, v_num=1, train_loss_step=521, train_loss_epoch=537]Epoch 122/400: 30%|βββ | 122/400 [00:21<00:50, 5.55it/s, v_num=1, train_loss_step=521, train_loss_epoch=537]Epoch 122/400: 30%|βββ | 122/400 [00:21<00:50, 5.55it/s, v_num=1, train_loss_step=531, train_loss_epoch=536]Epoch 123/400: 30%|βββ | 122/400 [00:21<00:50, 5.55it/s, v_num=1, train_loss_step=531, train_loss_epoch=536]Epoch 123/400: 31%|βββ | 123/400 [00:21<00:51, 5.39it/s, v_num=1, train_loss_step=531, train_loss_epoch=536]Epoch 123/400: 31%|βββ | 123/400 [00:21<00:51, 5.39it/s, v_num=1, train_loss_step=553, train_loss_epoch=536]Epoch 124/400: 31%|βββ | 123/400 [00:21<00:51, 5.39it/s, v_num=1, train_loss_step=553, train_loss_epoch=536]Epoch 124/400: 31%|βββ | 124/400 [00:22<00:50, 5.50it/s, v_num=1, train_loss_step=553, train_loss_epoch=536]Epoch 124/400: 31%|βββ | 124/400 [00:22<00:50, 5.50it/s, v_num=1, train_loss_step=548, train_loss_epoch=536]Epoch 125/400: 31%|βββ | 124/400 [00:22<00:50, 5.50it/s, v_num=1, train_loss_step=548, train_loss_epoch=536]Epoch 125/400: 31%|ββββ | 125/400 [00:22<00:50, 5.44it/s, v_num=1, train_loss_step=548, train_loss_epoch=536]Epoch 125/400: 31%|ββββ | 125/400 [00:22<00:50, 5.44it/s, v_num=1, train_loss_step=544, train_loss_epoch=536]Epoch 126/400: 31%|ββββ | 125/400 [00:22<00:50, 5.44it/s, v_num=1, train_loss_step=544, train_loss_epoch=536]Epoch 126/400: 32%|ββββ | 126/400 [00:22<00:49, 5.50it/s, v_num=1, train_loss_step=544, train_loss_epoch=536]Epoch 126/400: 32%|ββββ | 126/400 [00:22<00:49, 5.50it/s, v_num=1, train_loss_step=550, train_loss_epoch=536]Epoch 127/400: 32%|ββββ | 126/400 [00:22<00:49, 5.50it/s, v_num=1, train_loss_step=550, train_loss_epoch=536]Epoch 127/400: 32%|ββββ | 127/400 [00:22<00:48, 5.65it/s, v_num=1, train_loss_step=550, train_loss_epoch=536]Epoch 127/400: 32%|ββββ | 127/400 [00:22<00:48, 5.65it/s, v_num=1, train_loss_step=552, train_loss_epoch=535]Epoch 128/400: 32%|ββββ | 127/400 [00:22<00:48, 5.65it/s, v_num=1, train_loss_step=552, train_loss_epoch=535]Epoch 128/400: 32%|ββββ | 128/400 [00:22<00:47, 5.73it/s, v_num=1, train_loss_step=552, train_loss_epoch=535]Epoch 128/400: 32%|ββββ | 128/400 [00:22<00:47, 5.73it/s, v_num=1, train_loss_step=548, train_loss_epoch=535]Epoch 129/400: 32%|ββββ | 128/400 [00:22<00:47, 5.73it/s, v_num=1, train_loss_step=548, train_loss_epoch=535]Epoch 129/400: 32%|ββββ | 129/400 [00:22<00:46, 5.85it/s, v_num=1, train_loss_step=548, train_loss_epoch=535]Epoch 129/400: 32%|ββββ | 129/400 [00:22<00:46, 5.85it/s, v_num=1, train_loss_step=521, train_loss_epoch=535]Epoch 130/400: 32%|ββββ | 129/400 [00:22<00:46, 5.85it/s, v_num=1, train_loss_step=521, train_loss_epoch=535]Epoch 130/400: 32%|ββββ | 130/400 [00:23<00:45, 5.95it/s, v_num=1, train_loss_step=521, train_loss_epoch=535]Epoch 130/400: 32%|ββββ | 130/400 [00:23<00:45, 5.95it/s, v_num=1, train_loss_step=507, train_loss_epoch=535]Epoch 131/400: 32%|ββββ | 130/400 [00:23<00:45, 5.95it/s, v_num=1, train_loss_step=507, train_loss_epoch=535]Epoch 131/400: 33%|ββββ | 131/400 [00:23<00:44, 6.02it/s, v_num=1, train_loss_step=507, train_loss_epoch=535]Epoch 131/400: 33%|ββββ | 131/400 [00:23<00:44, 6.02it/s, v_num=1, train_loss_step=568, train_loss_epoch=535]Epoch 132/400: 33%|ββββ | 131/400 [00:23<00:44, 6.02it/s, v_num=1, train_loss_step=568, train_loss_epoch=535]Epoch 132/400: 33%|ββββ | 132/400 [00:23<00:43, 6.10it/s, v_num=1, train_loss_step=568, train_loss_epoch=535]Epoch 132/400: 33%|ββββ | 132/400 [00:23<00:43, 6.10it/s, v_num=1, train_loss_step=552, train_loss_epoch=534]Epoch 133/400: 33%|ββββ | 132/400 [00:23<00:43, 6.10it/s, v_num=1, train_loss_step=552, train_loss_epoch=534]Epoch 133/400: 33%|ββββ | 133/400 [00:23<00:43, 6.10it/s, v_num=1, train_loss_step=552, train_loss_epoch=534]Epoch 133/400: 33%|ββββ | 133/400 [00:23<00:43, 6.10it/s, v_num=1, train_loss_step=566, train_loss_epoch=535]Epoch 134/400: 33%|ββββ | 133/400 [00:23<00:43, 6.10it/s, v_num=1, train_loss_step=566, train_loss_epoch=535]Epoch 134/400: 34%|ββββ | 134/400 [00:23<00:45, 5.79it/s, v_num=1, train_loss_step=566, train_loss_epoch=535]Epoch 134/400: 34%|ββββ | 134/400 [00:23<00:45, 5.79it/s, v_num=1, train_loss_step=544, train_loss_epoch=534]Epoch 135/400: 34%|ββββ | 134/400 [00:23<00:45, 5.79it/s, v_num=1, train_loss_step=544, train_loss_epoch=534]Epoch 135/400: 34%|ββββ | 135/400 [00:23<00:45, 5.83it/s, v_num=1, train_loss_step=544, train_loss_epoch=534]Epoch 135/400: 34%|ββββ | 135/400 [00:23<00:45, 5.83it/s, v_num=1, train_loss_step=500, train_loss_epoch=534]Epoch 136/400: 34%|ββββ | 135/400 [00:23<00:45, 5.83it/s, v_num=1, train_loss_step=500, train_loss_epoch=534]Epoch 136/400: 34%|ββββ | 136/400 [00:24<00:46, 5.63it/s, v_num=1, train_loss_step=500, train_loss_epoch=534]Epoch 136/400: 34%|ββββ | 136/400 [00:24<00:46, 5.63it/s, v_num=1, train_loss_step=510, train_loss_epoch=534]Epoch 137/400: 34%|ββββ | 136/400 [00:24<00:46, 5.63it/s, v_num=1, train_loss_step=510, train_loss_epoch=534]Epoch 137/400: 34%|ββββ | 137/400 [00:24<00:46, 5.67it/s, v_num=1, train_loss_step=510, train_loss_epoch=534]Epoch 137/400: 34%|ββββ | 137/400 [00:24<00:46, 5.67it/s, v_num=1, train_loss_step=542, train_loss_epoch=533]Epoch 138/400: 34%|ββββ | 137/400 [00:24<00:46, 5.67it/s, v_num=1, train_loss_step=542, train_loss_epoch=533]Epoch 138/400: 34%|ββββ | 138/400 [00:24<00:47, 5.48it/s, v_num=1, train_loss_step=542, train_loss_epoch=533]Epoch 138/400: 34%|ββββ | 138/400 [00:24<00:47, 5.48it/s, v_num=1, train_loss_step=542, train_loss_epoch=532]Epoch 139/400: 34%|ββββ | 138/400 [00:24<00:47, 5.48it/s, v_num=1, train_loss_step=542, train_loss_epoch=532]Epoch 139/400: 35%|ββββ | 139/400 [00:24<00:47, 5.44it/s, v_num=1, train_loss_step=542, train_loss_epoch=532]Epoch 139/400: 35%|ββββ | 139/400 [00:24<00:47, 5.44it/s, v_num=1, train_loss_step=542, train_loss_epoch=533]Epoch 140/400: 35%|ββββ | 139/400 [00:24<00:47, 5.44it/s, v_num=1, train_loss_step=542, train_loss_epoch=533]Epoch 140/400: 35%|ββββ | 140/400 [00:24<00:48, 5.38it/s, v_num=1, train_loss_step=542, train_loss_epoch=533]Epoch 140/400: 35%|ββββ | 140/400 [00:24<00:48, 5.38it/s, v_num=1, train_loss_step=534, train_loss_epoch=532]Epoch 141/400: 35%|ββββ | 140/400 [00:24<00:48, 5.38it/s, v_num=1, train_loss_step=534, train_loss_epoch=532]Epoch 141/400: 35%|ββββ | 141/400 [00:25<00:49, 5.28it/s, v_num=1, train_loss_step=534, train_loss_epoch=532]Epoch 141/400: 35%|ββββ | 141/400 [00:25<00:49, 5.28it/s, v_num=1, train_loss_step=523, train_loss_epoch=532]Epoch 142/400: 35%|ββββ | 141/400 [00:25<00:49, 5.28it/s, v_num=1, train_loss_step=523, train_loss_epoch=532]Epoch 142/400: 36%|ββββ | 142/400 [00:25<00:48, 5.29it/s, v_num=1, train_loss_step=523, train_loss_epoch=532]Epoch 142/400: 36%|ββββ | 142/400 [00:25<00:48, 5.29it/s, v_num=1, train_loss_step=503, train_loss_epoch=532]Epoch 143/400: 36%|ββββ | 142/400 [00:25<00:48, 5.29it/s, v_num=1, train_loss_step=503, train_loss_epoch=532]Epoch 143/400: 36%|ββββ | 143/400 [00:25<00:47, 5.41it/s, v_num=1, train_loss_step=503, train_loss_epoch=532]Epoch 143/400: 36%|ββββ | 143/400 [00:25<00:47, 5.41it/s, v_num=1, train_loss_step=555, train_loss_epoch=532]Epoch 144/400: 36%|ββββ | 143/400 [00:25<00:47, 5.41it/s, v_num=1, train_loss_step=555, train_loss_epoch=532]Epoch 144/400: 36%|ββββ | 144/400 [00:25<00:46, 5.56it/s, v_num=1, train_loss_step=555, train_loss_epoch=532]Epoch 144/400: 36%|ββββ | 144/400 [00:25<00:46, 5.56it/s, v_num=1, train_loss_step=536, train_loss_epoch=532]Epoch 145/400: 36%|ββββ | 144/400 [00:25<00:46, 5.56it/s, v_num=1, train_loss_step=536, train_loss_epoch=532]Epoch 145/400: 36%|ββββ | 145/400 [00:25<00:45, 5.60it/s, v_num=1, train_loss_step=536, train_loss_epoch=532]Epoch 145/400: 36%|ββββ | 145/400 [00:25<00:45, 5.60it/s, v_num=1, train_loss_step=514, train_loss_epoch=532]Epoch 146/400: 36%|ββββ | 145/400 [00:25<00:45, 5.60it/s, v_num=1, train_loss_step=514, train_loss_epoch=532]Epoch 146/400: 36%|ββββ | 146/400 [00:25<00:45, 5.64it/s, v_num=1, train_loss_step=514, train_loss_epoch=532]Epoch 146/400: 36%|ββββ | 146/400 [00:25<00:45, 5.64it/s, v_num=1, train_loss_step=551, train_loss_epoch=531]Epoch 147/400: 36%|ββββ | 146/400 [00:25<00:45, 5.64it/s, v_num=1, train_loss_step=551, train_loss_epoch=531]Epoch 147/400: 37%|ββββ | 147/400 [00:26<00:46, 5.40it/s, v_num=1, train_loss_step=551, train_loss_epoch=531]Epoch 147/400: 37%|ββββ | 147/400 [00:26<00:46, 5.40it/s, v_num=1, train_loss_step=500, train_loss_epoch=531]Epoch 148/400: 37%|ββββ | 147/400 [00:26<00:46, 5.40it/s, v_num=1, train_loss_step=500, train_loss_epoch=531]Epoch 148/400: 37%|ββββ | 148/400 [00:26<00:45, 5.51it/s, v_num=1, train_loss_step=500, train_loss_epoch=531]Epoch 148/400: 37%|ββββ | 148/400 [00:26<00:45, 5.51it/s, v_num=1, train_loss_step=566, train_loss_epoch=531]Epoch 149/400: 37%|ββββ | 148/400 [00:26<00:45, 5.51it/s, v_num=1, train_loss_step=566, train_loss_epoch=531]Epoch 149/400: 37%|ββββ | 149/400 [00:26<00:43, 5.74it/s, v_num=1, train_loss_step=566, train_loss_epoch=531]Epoch 149/400: 37%|ββββ | 149/400 [00:26<00:43, 5.74it/s, v_num=1, train_loss_step=538, train_loss_epoch=531]Epoch 150/400: 37%|ββββ | 149/400 [00:26<00:43, 5.74it/s, v_num=1, train_loss_step=538, train_loss_epoch=531]Epoch 150/400: 38%|ββββ | 150/400 [00:26<00:43, 5.79it/s, v_num=1, train_loss_step=538, train_loss_epoch=531]Epoch 150/400: 38%|ββββ | 150/400 [00:26<00:43, 5.79it/s, v_num=1, train_loss_step=546, train_loss_epoch=530]Epoch 151/400: 38%|ββββ | 150/400 [00:26<00:43, 5.79it/s, v_num=1, train_loss_step=546, train_loss_epoch=530]Epoch 151/400: 38%|ββββ | 151/400 [00:26<00:43, 5.76it/s, v_num=1, train_loss_step=546, train_loss_epoch=530]Epoch 151/400: 38%|ββββ | 151/400 [00:26<00:43, 5.76it/s, v_num=1, train_loss_step=533, train_loss_epoch=530]Epoch 152/400: 38%|ββββ | 151/400 [00:26<00:43, 5.76it/s, v_num=1, train_loss_step=533, train_loss_epoch=530]Epoch 152/400: 38%|ββββ | 152/400 [00:26<00:41, 5.93it/s, v_num=1, train_loss_step=533, train_loss_epoch=530]Epoch 152/400: 38%|ββββ | 152/400 [00:26<00:41, 5.93it/s, v_num=1, train_loss_step=515, train_loss_epoch=530]Epoch 153/400: 38%|ββββ | 152/400 [00:26<00:41, 5.93it/s, v_num=1, train_loss_step=515, train_loss_epoch=530]Epoch 153/400: 38%|ββββ | 153/400 [00:27<00:40, 6.07it/s, v_num=1, train_loss_step=515, train_loss_epoch=530]Epoch 153/400: 38%|ββββ | 153/400 [00:27<00:40, 6.07it/s, v_num=1, train_loss_step=522, train_loss_epoch=530]Epoch 154/400: 38%|ββββ | 153/400 [00:27<00:40, 6.07it/s, v_num=1, train_loss_step=522, train_loss_epoch=530]Epoch 154/400: 38%|ββββ | 154/400 [00:27<00:40, 6.10it/s, v_num=1, train_loss_step=522, train_loss_epoch=530]Epoch 154/400: 38%|ββββ | 154/400 [00:27<00:40, 6.10it/s, v_num=1, train_loss_step=510, train_loss_epoch=529]Epoch 155/400: 38%|ββββ | 154/400 [00:27<00:40, 6.10it/s, v_num=1, train_loss_step=510, train_loss_epoch=529]Epoch 155/400: 39%|ββββ | 155/400 [00:27<00:40, 6.09it/s, v_num=1, train_loss_step=510, train_loss_epoch=529]Epoch 155/400: 39%|ββββ | 155/400 [00:27<00:40, 6.09it/s, v_num=1, train_loss_step=535, train_loss_epoch=529]Epoch 156/400: 39%|ββββ | 155/400 [00:27<00:40, 6.09it/s, v_num=1, train_loss_step=535, train_loss_epoch=529]Epoch 156/400: 39%|ββββ | 156/400 [00:27<00:40, 5.99it/s, v_num=1, train_loss_step=535, train_loss_epoch=529]Epoch 156/400: 39%|ββββ | 156/400 [00:27<00:40, 5.99it/s, v_num=1, train_loss_step=516, train_loss_epoch=529]Epoch 157/400: 39%|ββββ | 156/400 [00:27<00:40, 5.99it/s, v_num=1, train_loss_step=516, train_loss_epoch=529]Epoch 157/400: 39%|ββββ | 157/400 [00:27<00:42, 5.73it/s, v_num=1, train_loss_step=516, train_loss_epoch=529]Epoch 157/400: 39%|ββββ | 157/400 [00:27<00:42, 5.73it/s, v_num=1, train_loss_step=558, train_loss_epoch=529]Epoch 158/400: 39%|ββββ | 157/400 [00:27<00:42, 5.73it/s, v_num=1, train_loss_step=558, train_loss_epoch=529]Epoch 158/400: 40%|ββββ | 158/400 [00:27<00:41, 5.83it/s, v_num=1, train_loss_step=558, train_loss_epoch=529]Epoch 158/400: 40%|ββββ | 158/400 [00:27<00:41, 5.83it/s, v_num=1, train_loss_step=509, train_loss_epoch=529]Epoch 159/400: 40%|ββββ | 158/400 [00:27<00:41, 5.83it/s, v_num=1, train_loss_step=509, train_loss_epoch=529]Epoch 159/400: 40%|ββββ | 159/400 [00:28<00:40, 5.91it/s, v_num=1, train_loss_step=509, train_loss_epoch=529]Epoch 159/400: 40%|ββββ | 159/400 [00:28<00:40, 5.91it/s, v_num=1, train_loss_step=502, train_loss_epoch=528]Epoch 160/400: 40%|ββββ | 159/400 [00:28<00:40, 5.91it/s, v_num=1, train_loss_step=502, train_loss_epoch=528]Epoch 160/400: 40%|ββββ | 160/400 [00:28<00:40, 5.98it/s, v_num=1, train_loss_step=502, train_loss_epoch=528]Epoch 160/400: 40%|ββββ | 160/400 [00:28<00:40, 5.98it/s, v_num=1, train_loss_step=518, train_loss_epoch=529]Epoch 161/400: 40%|ββββ | 160/400 [00:28<00:40, 5.98it/s, v_num=1, train_loss_step=518, train_loss_epoch=529]Epoch 161/400: 40%|ββββ | 161/400 [00:28<00:41, 5.75it/s, v_num=1, train_loss_step=518, train_loss_epoch=529]Epoch 161/400: 40%|ββββ | 161/400 [00:28<00:41, 5.75it/s, v_num=1, train_loss_step=522, train_loss_epoch=528]Epoch 162/400: 40%|ββββ | 161/400 [00:28<00:41, 5.75it/s, v_num=1, train_loss_step=522, train_loss_epoch=528]Epoch 162/400: 40%|ββββ | 162/400 [00:28<00:41, 5.68it/s, v_num=1, train_loss_step=522, train_loss_epoch=528]Epoch 162/400: 40%|ββββ | 162/400 [00:28<00:41, 5.68it/s, v_num=1, train_loss_step=528, train_loss_epoch=528]Epoch 163/400: 40%|ββββ | 162/400 [00:28<00:41, 5.68it/s, v_num=1, train_loss_step=528, train_loss_epoch=528]Epoch 163/400: 41%|ββββ | 163/400 [00:28<00:41, 5.73it/s, v_num=1, train_loss_step=528, train_loss_epoch=528]Epoch 163/400: 41%|ββββ | 163/400 [00:28<00:41, 5.73it/s, v_num=1, train_loss_step=544, train_loss_epoch=528]Epoch 164/400: 41%|ββββ | 163/400 [00:28<00:41, 5.73it/s, v_num=1, train_loss_step=544, train_loss_epoch=528]Epoch 164/400: 41%|ββββ | 164/400 [00:29<00:40, 5.76it/s, v_num=1, train_loss_step=544, train_loss_epoch=528]Epoch 164/400: 41%|ββββ | 164/400 [00:29<00:40, 5.76it/s, v_num=1, train_loss_step=503, train_loss_epoch=528]Epoch 165/400: 41%|ββββ | 164/400 [00:29<00:40, 5.76it/s, v_num=1, train_loss_step=503, train_loss_epoch=528]Epoch 165/400: 41%|βββββ | 165/400 [00:29<00:40, 5.79it/s, v_num=1, train_loss_step=503, train_loss_epoch=528]Epoch 165/400: 41%|βββββ | 165/400 [00:29<00:40, 5.79it/s, v_num=1, train_loss_step=537, train_loss_epoch=528]Epoch 166/400: 41%|βββββ | 165/400 [00:29<00:40, 5.79it/s, v_num=1, train_loss_step=537, train_loss_epoch=528]Epoch 166/400: 42%|βββββ | 166/400 [00:29<00:39, 5.86it/s, v_num=1, train_loss_step=537, train_loss_epoch=528]Epoch 166/400: 42%|βββββ | 166/400 [00:29<00:39, 5.86it/s, v_num=1, train_loss_step=518, train_loss_epoch=527]Epoch 167/400: 42%|βββββ | 166/400 [00:29<00:39, 5.86it/s, v_num=1, train_loss_step=518, train_loss_epoch=527]Epoch 167/400: 42%|βββββ | 167/400 [00:29<00:39, 5.91it/s, v_num=1, train_loss_step=518, train_loss_epoch=527]Epoch 167/400: 42%|βββββ | 167/400 [00:29<00:39, 5.91it/s, v_num=1, train_loss_step=565, train_loss_epoch=527]Epoch 168/400: 42%|βββββ | 167/400 [00:29<00:39, 5.91it/s, v_num=1, train_loss_step=565, train_loss_epoch=527]Epoch 168/400: 42%|βββββ | 168/400 [00:29<00:40, 5.72it/s, v_num=1, train_loss_step=565, train_loss_epoch=527]Epoch 168/400: 42%|βββββ | 168/400 [00:29<00:40, 5.72it/s, v_num=1, train_loss_step=527, train_loss_epoch=527]Epoch 169/400: 42%|βββββ | 168/400 [00:29<00:40, 5.72it/s, v_num=1, train_loss_step=527, train_loss_epoch=527]Epoch 169/400: 42%|βββββ | 169/400 [00:29<00:39, 5.82it/s, v_num=1, train_loss_step=527, train_loss_epoch=527]Epoch 169/400: 42%|βββββ | 169/400 [00:29<00:39, 5.82it/s, v_num=1, train_loss_step=528, train_loss_epoch=527]Epoch 170/400: 42%|βββββ | 169/400 [00:29<00:39, 5.82it/s, v_num=1, train_loss_step=528, train_loss_epoch=527]Epoch 170/400: 42%|βββββ | 170/400 [00:30<00:40, 5.73it/s, v_num=1, train_loss_step=528, train_loss_epoch=527]Epoch 170/400: 42%|βββββ | 170/400 [00:30<00:40, 5.73it/s, v_num=1, train_loss_step=525, train_loss_epoch=527]Epoch 171/400: 42%|βββββ | 170/400 [00:30<00:40, 5.73it/s, v_num=1, train_loss_step=525, train_loss_epoch=527]Epoch 171/400: 43%|βββββ | 171/400 [00:30<00:39, 5.82it/s, v_num=1, train_loss_step=525, train_loss_epoch=527]Epoch 171/400: 43%|βββββ | 171/400 [00:30<00:39, 5.82it/s, v_num=1, train_loss_step=548, train_loss_epoch=526]Epoch 172/400: 43%|βββββ | 171/400 [00:30<00:39, 5.82it/s, v_num=1, train_loss_step=548, train_loss_epoch=526]Epoch 172/400: 43%|βββββ | 172/400 [00:30<00:39, 5.73it/s, v_num=1, train_loss_step=548, train_loss_epoch=526]Epoch 172/400: 43%|βββββ | 172/400 [00:30<00:39, 5.73it/s, v_num=1, train_loss_step=524, train_loss_epoch=526]Epoch 173/400: 43%|βββββ | 172/400 [00:30<00:39, 5.73it/s, v_num=1, train_loss_step=524, train_loss_epoch=526]Epoch 173/400: 43%|βββββ | 173/400 [00:30<00:40, 5.58it/s, v_num=1, train_loss_step=524, train_loss_epoch=526]Epoch 173/400: 43%|βββββ | 173/400 [00:30<00:40, 5.58it/s, v_num=1, train_loss_step=548, train_loss_epoch=526]Epoch 174/400: 43%|βββββ | 173/400 [00:30<00:40, 5.58it/s, v_num=1, train_loss_step=548, train_loss_epoch=526]Epoch 174/400: 44%|βββββ | 174/400 [00:30<00:41, 5.43it/s, v_num=1, train_loss_step=548, train_loss_epoch=526]Epoch 174/400: 44%|βββββ | 174/400 [00:30<00:41, 5.43it/s, v_num=1, train_loss_step=531, train_loss_epoch=526]Epoch 175/400: 44%|βββββ | 174/400 [00:30<00:41, 5.43it/s, v_num=1, train_loss_step=531, train_loss_epoch=526]Epoch 175/400: 44%|βββββ | 175/400 [00:30<00:40, 5.52it/s, v_num=1, train_loss_step=531, train_loss_epoch=526]Epoch 175/400: 44%|βββββ | 175/400 [00:30<00:40, 5.52it/s, v_num=1, train_loss_step=523, train_loss_epoch=526]Epoch 176/400: 44%|βββββ | 175/400 [00:30<00:40, 5.52it/s, v_num=1, train_loss_step=523, train_loss_epoch=526]Epoch 176/400: 44%|βββββ | 176/400 [00:31<00:39, 5.74it/s, v_num=1, train_loss_step=523, train_loss_epoch=526]Epoch 176/400: 44%|βββββ | 176/400 [00:31<00:39, 5.74it/s, v_num=1, train_loss_step=514, train_loss_epoch=526]Epoch 177/400: 44%|βββββ | 176/400 [00:31<00:39, 5.74it/s, v_num=1, train_loss_step=514, train_loss_epoch=526]Epoch 177/400: 44%|βββββ | 177/400 [00:31<00:39, 5.67it/s, v_num=1, train_loss_step=514, train_loss_epoch=526]Epoch 177/400: 44%|βββββ | 177/400 [00:31<00:39, 5.67it/s, v_num=1, train_loss_step=537, train_loss_epoch=525]Epoch 178/400: 44%|βββββ | 177/400 [00:31<00:39, 5.67it/s, v_num=1, train_loss_step=537, train_loss_epoch=525]Epoch 178/400: 44%|βββββ | 178/400 [00:31<00:39, 5.65it/s, v_num=1, train_loss_step=537, train_loss_epoch=525]Epoch 178/400: 44%|βββββ | 178/400 [00:31<00:39, 5.65it/s, v_num=1, train_loss_step=516, train_loss_epoch=526]Epoch 179/400: 44%|βββββ | 178/400 [00:31<00:39, 5.65it/s, v_num=1, train_loss_step=516, train_loss_epoch=526]Epoch 179/400: 45%|βββββ | 179/400 [00:31<00:40, 5.51it/s, v_num=1, train_loss_step=516, train_loss_epoch=526]Epoch 179/400: 45%|βββββ | 179/400 [00:31<00:40, 5.51it/s, v_num=1, train_loss_step=495, train_loss_epoch=525]Epoch 180/400: 45%|βββββ | 179/400 [00:31<00:40, 5.51it/s, v_num=1, train_loss_step=495, train_loss_epoch=525]Epoch 180/400: 45%|βββββ | 180/400 [00:31<00:40, 5.43it/s, v_num=1, train_loss_step=495, train_loss_epoch=525]Epoch 180/400: 45%|βββββ | 180/400 [00:31<00:40, 5.43it/s, v_num=1, train_loss_step=540, train_loss_epoch=525]Epoch 181/400: 45%|βββββ | 180/400 [00:31<00:40, 5.43it/s, v_num=1, train_loss_step=540, train_loss_epoch=525]Epoch 181/400: 45%|βββββ | 181/400 [00:32<00:40, 5.38it/s, v_num=1, train_loss_step=540, train_loss_epoch=525]Epoch 181/400: 45%|βββββ | 181/400 [00:32<00:40, 5.38it/s, v_num=1, train_loss_step=577, train_loss_epoch=525]Epoch 182/400: 45%|βββββ | 181/400 [00:32<00:40, 5.38it/s, v_num=1, train_loss_step=577, train_loss_epoch=525]Epoch 182/400: 46%|βββββ | 182/400 [00:32<00:39, 5.54it/s, v_num=1, train_loss_step=577, train_loss_epoch=525]Epoch 182/400: 46%|βββββ | 182/400 [00:32<00:39, 5.54it/s, v_num=1, train_loss_step=506, train_loss_epoch=525]Epoch 183/400: 46%|βββββ | 182/400 [00:32<00:39, 5.54it/s, v_num=1, train_loss_step=506, train_loss_epoch=525]Epoch 183/400: 46%|βββββ | 183/400 [00:32<00:38, 5.67it/s, v_num=1, train_loss_step=506, train_loss_epoch=525]Epoch 183/400: 46%|βββββ | 183/400 [00:32<00:38, 5.67it/s, v_num=1, train_loss_step=542, train_loss_epoch=524]Epoch 184/400: 46%|βββββ | 183/400 [00:32<00:38, 5.67it/s, v_num=1, train_loss_step=542, train_loss_epoch=524]Epoch 184/400: 46%|βββββ | 184/400 [00:32<00:39, 5.45it/s, v_num=1, train_loss_step=542, train_loss_epoch=524]Epoch 184/400: 46%|βββββ | 184/400 [00:32<00:39, 5.45it/s, v_num=1, train_loss_step=543, train_loss_epoch=524]Epoch 185/400: 46%|βββββ | 184/400 [00:32<00:39, 5.45it/s, v_num=1, train_loss_step=543, train_loss_epoch=524]Epoch 185/400: 46%|βββββ | 185/400 [00:32<00:40, 5.35it/s, v_num=1, train_loss_step=543, train_loss_epoch=524]Epoch 185/400: 46%|βββββ | 185/400 [00:32<00:40, 5.35it/s, v_num=1, train_loss_step=537, train_loss_epoch=524]Epoch 186/400: 46%|βββββ | 185/400 [00:32<00:40, 5.35it/s, v_num=1, train_loss_step=537, train_loss_epoch=524]Epoch 186/400: 46%|βββββ | 186/400 [00:32<00:40, 5.27it/s, v_num=1, train_loss_step=537, train_loss_epoch=524]Epoch 186/400: 46%|βββββ | 186/400 [00:32<00:40, 5.27it/s, v_num=1, train_loss_step=503, train_loss_epoch=524]Epoch 187/400: 46%|βββββ | 186/400 [00:32<00:40, 5.27it/s, v_num=1, train_loss_step=503, train_loss_epoch=524]Epoch 187/400: 47%|βββββ | 187/400 [00:33<00:41, 5.17it/s, v_num=1, train_loss_step=503, train_loss_epoch=524]Epoch 187/400: 47%|βββββ | 187/400 [00:33<00:41, 5.17it/s, v_num=1, train_loss_step=506, train_loss_epoch=524]Epoch 188/400: 47%|βββββ | 187/400 [00:33<00:41, 5.17it/s, v_num=1, train_loss_step=506, train_loss_epoch=524]Epoch 188/400: 47%|βββββ | 188/400 [00:33<00:39, 5.33it/s, v_num=1, train_loss_step=506, train_loss_epoch=524]Epoch 188/400: 47%|βββββ | 188/400 [00:33<00:39, 5.33it/s, v_num=1, train_loss_step=540, train_loss_epoch=524]Epoch 189/400: 47%|βββββ | 188/400 [00:33<00:39, 5.33it/s, v_num=1, train_loss_step=540, train_loss_epoch=524]Epoch 189/400: 47%|βββββ | 189/400 [00:33<00:37, 5.58it/s, v_num=1, train_loss_step=540, train_loss_epoch=524]Epoch 189/400: 47%|βββββ | 189/400 [00:33<00:37, 5.58it/s, v_num=1, train_loss_step=485, train_loss_epoch=523]Epoch 190/400: 47%|βββββ | 189/400 [00:33<00:37, 5.58it/s, v_num=1, train_loss_step=485, train_loss_epoch=523]Epoch 190/400: 48%|βββββ | 190/400 [00:33<00:37, 5.58it/s, v_num=1, train_loss_step=485, train_loss_epoch=523]Epoch 190/400: 48%|βββββ | 190/400 [00:33<00:37, 5.58it/s, v_num=1, train_loss_step=541, train_loss_epoch=523]Epoch 191/400: 48%|βββββ | 190/400 [00:33<00:37, 5.58it/s, v_num=1, train_loss_step=541, train_loss_epoch=523]Epoch 191/400: 48%|βββββ | 191/400 [00:33<00:37, 5.52it/s, v_num=1, train_loss_step=541, train_loss_epoch=523]Epoch 191/400: 48%|βββββ | 191/400 [00:33<00:37, 5.52it/s, v_num=1, train_loss_step=529, train_loss_epoch=524]Epoch 192/400: 48%|βββββ | 191/400 [00:33<00:37, 5.52it/s, v_num=1, train_loss_step=529, train_loss_epoch=524]Epoch 192/400: 48%|βββββ | 192/400 [00:34<00:38, 5.41it/s, v_num=1, train_loss_step=529, train_loss_epoch=524]Epoch 192/400: 48%|βββββ | 192/400 [00:34<00:38, 5.41it/s, v_num=1, train_loss_step=517, train_loss_epoch=523]Epoch 193/400: 48%|βββββ | 192/400 [00:34<00:38, 5.41it/s, v_num=1, train_loss_step=517, train_loss_epoch=523]Epoch 193/400: 48%|βββββ | 193/400 [00:34<00:38, 5.34it/s, v_num=1, train_loss_step=517, train_loss_epoch=523]Epoch 193/400: 48%|βββββ | 193/400 [00:34<00:38, 5.34it/s, v_num=1, train_loss_step=501, train_loss_epoch=523]Epoch 194/400: 48%|βββββ | 193/400 [00:34<00:38, 5.34it/s, v_num=1, train_loss_step=501, train_loss_epoch=523]Epoch 194/400: 48%|βββββ | 194/400 [00:34<00:37, 5.49it/s, v_num=1, train_loss_step=501, train_loss_epoch=523]Epoch 194/400: 48%|βββββ | 194/400 [00:34<00:37, 5.49it/s, v_num=1, train_loss_step=529, train_loss_epoch=523]Epoch 195/400: 48%|βββββ | 194/400 [00:34<00:37, 5.49it/s, v_num=1, train_loss_step=529, train_loss_epoch=523]Epoch 195/400: 49%|βββββ | 195/400 [00:34<00:36, 5.57it/s, v_num=1, train_loss_step=529, train_loss_epoch=523]Epoch 195/400: 49%|βββββ | 195/400 [00:34<00:36, 5.57it/s, v_num=1, train_loss_step=525, train_loss_epoch=522]Epoch 196/400: 49%|βββββ | 195/400 [00:34<00:36, 5.57it/s, v_num=1, train_loss_step=525, train_loss_epoch=522]Epoch 196/400: 49%|βββββ | 196/400 [00:34<00:35, 5.75it/s, v_num=1, train_loss_step=525, train_loss_epoch=522]Epoch 196/400: 49%|βββββ | 196/400 [00:34<00:35, 5.75it/s, v_num=1, train_loss_step=493, train_loss_epoch=522]Epoch 197/400: 49%|βββββ | 196/400 [00:34<00:35, 5.75it/s, v_num=1, train_loss_step=493, train_loss_epoch=522]Epoch 197/400: 49%|βββββ | 197/400 [00:34<00:35, 5.64it/s, v_num=1, train_loss_step=493, train_loss_epoch=522]Epoch 197/400: 49%|βββββ | 197/400 [00:34<00:35, 5.64it/s, v_num=1, train_loss_step=540, train_loss_epoch=523]Epoch 198/400: 49%|βββββ | 197/400 [00:34<00:35, 5.64it/s, v_num=1, train_loss_step=540, train_loss_epoch=523]Epoch 198/400: 50%|βββββ | 198/400 [00:35<00:36, 5.47it/s, v_num=1, train_loss_step=540, train_loss_epoch=523]Epoch 198/400: 50%|βββββ | 198/400 [00:35<00:36, 5.47it/s, v_num=1, train_loss_step=510, train_loss_epoch=522]Epoch 199/400: 50%|βββββ | 198/400 [00:35<00:36, 5.47it/s, v_num=1, train_loss_step=510, train_loss_epoch=522]Epoch 199/400: 50%|βββββ | 199/400 [00:35<00:37, 5.34it/s, v_num=1, train_loss_step=510, train_loss_epoch=522]Epoch 199/400: 50%|βββββ | 199/400 [00:35<00:37, 5.34it/s, v_num=1, train_loss_step=499, train_loss_epoch=522]Epoch 200/400: 50%|βββββ | 199/400 [00:35<00:37, 5.34it/s, v_num=1, train_loss_step=499, train_loss_epoch=522]Epoch 200/400: 50%|βββββ | 200/400 [00:35<00:38, 5.22it/s, v_num=1, train_loss_step=499, train_loss_epoch=522]Epoch 200/400: 50%|βββββ | 200/400 [00:35<00:38, 5.22it/s, v_num=1, train_loss_step=520, train_loss_epoch=522]Epoch 201/400: 50%|βββββ | 200/400 [00:35<00:38, 5.22it/s, v_num=1, train_loss_step=520, train_loss_epoch=522]Epoch 201/400: 50%|βββββ | 201/400 [00:35<00:37, 5.30it/s, v_num=1, train_loss_step=520, train_loss_epoch=522]Epoch 201/400: 50%|βββββ | 201/400 [00:35<00:37, 5.30it/s, v_num=1, train_loss_step=514, train_loss_epoch=522]Epoch 202/400: 50%|βββββ | 201/400 [00:35<00:37, 5.30it/s, v_num=1, train_loss_step=514, train_loss_epoch=522]Epoch 202/400: 50%|βββββ | 202/400 [00:35<00:35, 5.52it/s, v_num=1, train_loss_step=514, train_loss_epoch=522]Epoch 202/400: 50%|βββββ | 202/400 [00:35<00:35, 5.52it/s, v_num=1, train_loss_step=525, train_loss_epoch=522]Epoch 203/400: 50%|βββββ | 202/400 [00:35<00:35, 5.52it/s, v_num=1, train_loss_step=525, train_loss_epoch=522]Epoch 203/400: 51%|βββββ | 203/400 [00:36<00:34, 5.66it/s, v_num=1, train_loss_step=525, train_loss_epoch=522]Epoch 203/400: 51%|βββββ | 203/400 [00:36<00:34, 5.66it/s, v_num=1, train_loss_step=510, train_loss_epoch=522]Epoch 204/400: 51%|βββββ | 203/400 [00:36<00:34, 5.66it/s, v_num=1, train_loss_step=510, train_loss_epoch=522]Epoch 204/400: 51%|βββββ | 204/400 [00:36<00:35, 5.50it/s, v_num=1, train_loss_step=510, train_loss_epoch=522]Epoch 204/400: 51%|βββββ | 204/400 [00:36<00:35, 5.50it/s, v_num=1, train_loss_step=507, train_loss_epoch=521]Epoch 205/400: 51%|βββββ | 204/400 [00:36<00:35, 5.50it/s, v_num=1, train_loss_step=507, train_loss_epoch=521]Epoch 205/400: 51%|ββββββ | 205/400 [00:36<00:35, 5.53it/s, v_num=1, train_loss_step=507, train_loss_epoch=521]Epoch 205/400: 51%|ββββββ | 205/400 [00:36<00:35, 5.53it/s, v_num=1, train_loss_step=546, train_loss_epoch=521]Epoch 206/400: 51%|ββββββ | 205/400 [00:36<00:35, 5.53it/s, v_num=1, train_loss_step=546, train_loss_epoch=521]Epoch 206/400: 52%|ββββββ | 206/400 [00:36<00:35, 5.50it/s, v_num=1, train_loss_step=546, train_loss_epoch=521]Epoch 206/400: 52%|ββββββ | 206/400 [00:36<00:35, 5.50it/s, v_num=1, train_loss_step=553, train_loss_epoch=521]Epoch 207/400: 52%|ββββββ | 206/400 [00:36<00:35, 5.50it/s, v_num=1, train_loss_step=553, train_loss_epoch=521]Epoch 207/400: 52%|ββββββ | 207/400 [00:36<00:35, 5.38it/s, v_num=1, train_loss_step=553, train_loss_epoch=521]Epoch 207/400: 52%|ββββββ | 207/400 [00:36<00:35, 5.38it/s, v_num=1, train_loss_step=533, train_loss_epoch=521]Epoch 208/400: 52%|ββββββ | 207/400 [00:36<00:35, 5.38it/s, v_num=1, train_loss_step=533, train_loss_epoch=521]Epoch 208/400: 52%|ββββββ | 208/400 [00:37<00:35, 5.46it/s, v_num=1, train_loss_step=533, train_loss_epoch=521]Epoch 208/400: 52%|ββββββ | 208/400 [00:37<00:35, 5.46it/s, v_num=1, train_loss_step=538, train_loss_epoch=521]Epoch 209/400: 52%|ββββββ | 208/400 [00:37<00:35, 5.46it/s, v_num=1, train_loss_step=538, train_loss_epoch=521]Epoch 209/400: 52%|ββββββ | 209/400 [00:37<00:33, 5.67it/s, v_num=1, train_loss_step=538, train_loss_epoch=521]Epoch 209/400: 52%|ββββββ | 209/400 [00:37<00:33, 5.67it/s, v_num=1, train_loss_step=522, train_loss_epoch=521]Epoch 210/400: 52%|ββββββ | 209/400 [00:37<00:33, 5.67it/s, v_num=1, train_loss_step=522, train_loss_epoch=521]Epoch 210/400: 52%|ββββββ | 210/400 [00:37<00:32, 5.79it/s, v_num=1, train_loss_step=522, train_loss_epoch=521]Epoch 210/400: 52%|ββββββ | 210/400 [00:37<00:32, 5.79it/s, v_num=1, train_loss_step=522, train_loss_epoch=520]Epoch 211/400: 52%|ββββββ | 210/400 [00:37<00:32, 5.79it/s, v_num=1, train_loss_step=522, train_loss_epoch=520]Epoch 211/400: 53%|ββββββ | 211/400 [00:37<00:33, 5.67it/s, v_num=1, train_loss_step=522, train_loss_epoch=520]Epoch 211/400: 53%|ββββββ | 211/400 [00:37<00:33, 5.67it/s, v_num=1, train_loss_step=554, train_loss_epoch=520]Epoch 212/400: 53%|ββββββ | 211/400 [00:37<00:33, 5.67it/s, v_num=1, train_loss_step=554, train_loss_epoch=520]Epoch 212/400: 53%|ββββββ | 212/400 [00:37<00:33, 5.69it/s, v_num=1, train_loss_step=554, train_loss_epoch=520]Epoch 212/400: 53%|ββββββ | 212/400 [00:37<00:33, 5.69it/s, v_num=1, train_loss_step=524, train_loss_epoch=521]Epoch 213/400: 53%|ββββββ | 212/400 [00:37<00:33, 5.69it/s, v_num=1, train_loss_step=524, train_loss_epoch=521]Epoch 213/400: 53%|ββββββ | 213/400 [00:37<00:33, 5.66it/s, v_num=1, train_loss_step=524, train_loss_epoch=521]Epoch 213/400: 53%|ββββββ | 213/400 [00:37<00:33, 5.66it/s, v_num=1, train_loss_step=526, train_loss_epoch=521]Epoch 214/400: 53%|ββββββ | 213/400 [00:37<00:33, 5.66it/s, v_num=1, train_loss_step=526, train_loss_epoch=521]Epoch 214/400: 54%|ββββββ | 214/400 [00:38<00:33, 5.55it/s, v_num=1, train_loss_step=526, train_loss_epoch=521]Epoch 214/400: 54%|ββββββ | 214/400 [00:38<00:33, 5.55it/s, v_num=1, train_loss_step=515, train_loss_epoch=521]Epoch 215/400: 54%|ββββββ | 214/400 [00:38<00:33, 5.55it/s, v_num=1, train_loss_step=515, train_loss_epoch=521]Epoch 215/400: 54%|ββββββ | 215/400 [00:38<00:34, 5.42it/s, v_num=1, train_loss_step=515, train_loss_epoch=521]Epoch 215/400: 54%|ββββββ | 215/400 [00:38<00:34, 5.42it/s, v_num=1, train_loss_step=549, train_loss_epoch=520]Epoch 216/400: 54%|ββββββ | 215/400 [00:38<00:34, 5.42it/s, v_num=1, train_loss_step=549, train_loss_epoch=520]Epoch 216/400: 54%|ββββββ | 216/400 [00:38<00:32, 5.60it/s, v_num=1, train_loss_step=549, train_loss_epoch=520]Epoch 216/400: 54%|ββββββ | 216/400 [00:38<00:32, 5.60it/s, v_num=1, train_loss_step=516, train_loss_epoch=520]Epoch 217/400: 54%|ββββββ | 216/400 [00:38<00:32, 5.60it/s, v_num=1, train_loss_step=516, train_loss_epoch=520]Epoch 217/400: 54%|ββββββ | 217/400 [00:38<00:31, 5.76it/s, v_num=1, train_loss_step=516, train_loss_epoch=520]Epoch 217/400: 54%|ββββββ | 217/400 [00:38<00:31, 5.76it/s, v_num=1, train_loss_step=514, train_loss_epoch=520]Epoch 218/400: 54%|ββββββ | 217/400 [00:38<00:31, 5.76it/s, v_num=1, train_loss_step=514, train_loss_epoch=520]Epoch 218/400: 55%|ββββββ | 218/400 [00:38<00:31, 5.74it/s, v_num=1, train_loss_step=514, train_loss_epoch=520]Epoch 218/400: 55%|ββββββ | 218/400 [00:38<00:31, 5.74it/s, v_num=1, train_loss_step=538, train_loss_epoch=520]Epoch 219/400: 55%|ββββββ | 218/400 [00:38<00:31, 5.74it/s, v_num=1, train_loss_step=538, train_loss_epoch=520]Epoch 219/400: 55%|ββββββ | 219/400 [00:38<00:31, 5.75it/s, v_num=1, train_loss_step=538, train_loss_epoch=520]Epoch 219/400: 55%|ββββββ | 219/400 [00:38<00:31, 5.75it/s, v_num=1, train_loss_step=501, train_loss_epoch=520]Epoch 220/400: 55%|ββββββ | 219/400 [00:38<00:31, 5.75it/s, v_num=1, train_loss_step=501, train_loss_epoch=520]Epoch 220/400: 55%|ββββββ | 220/400 [00:39<00:30, 5.86it/s, v_num=1, train_loss_step=501, train_loss_epoch=520]Epoch 220/400: 55%|ββββββ | 220/400 [00:39<00:30, 5.86it/s, v_num=1, train_loss_step=524, train_loss_epoch=520]Epoch 221/400: 55%|ββββββ | 220/400 [00:39<00:30, 5.86it/s, v_num=1, train_loss_step=524, train_loss_epoch=520]Epoch 221/400: 55%|ββββββ | 221/400 [00:39<00:31, 5.76it/s, v_num=1, train_loss_step=524, train_loss_epoch=520]Epoch 221/400: 55%|ββββββ | 221/400 [00:39<00:31, 5.76it/s, v_num=1, train_loss_step=512, train_loss_epoch=519]Epoch 222/400: 55%|ββββββ | 221/400 [00:39<00:31, 5.76it/s, v_num=1, train_loss_step=512, train_loss_epoch=519]Epoch 222/400: 56%|ββββββ | 222/400 [00:39<00:32, 5.56it/s, v_num=1, train_loss_step=512, train_loss_epoch=519]Epoch 222/400: 56%|ββββββ | 222/400 [00:39<00:32, 5.56it/s, v_num=1, train_loss_step=481, train_loss_epoch=519]Epoch 223/400: 56%|ββββββ | 222/400 [00:39<00:32, 5.56it/s, v_num=1, train_loss_step=481, train_loss_epoch=519]Epoch 223/400: 56%|ββββββ | 223/400 [00:39<00:32, 5.49it/s, v_num=1, train_loss_step=481, train_loss_epoch=519]Epoch 223/400: 56%|ββββββ | 223/400 [00:39<00:32, 5.49it/s, v_num=1, train_loss_step=516, train_loss_epoch=519]Epoch 224/400: 56%|ββββββ | 223/400 [00:39<00:32, 5.49it/s, v_num=1, train_loss_step=516, train_loss_epoch=519]Epoch 224/400: 56%|ββββββ | 224/400 [00:39<00:30, 5.74it/s, v_num=1, train_loss_step=516, train_loss_epoch=519]Epoch 224/400: 56%|ββββββ | 224/400 [00:39<00:30, 5.74it/s, v_num=1, train_loss_step=495, train_loss_epoch=519]Epoch 225/400: 56%|ββββββ | 224/400 [00:39<00:30, 5.74it/s, v_num=1, train_loss_step=495, train_loss_epoch=519]Epoch 225/400: 56%|ββββββ | 225/400 [00:39<00:29, 5.87it/s, v_num=1, train_loss_step=495, train_loss_epoch=519]Epoch 225/400: 56%|ββββββ | 225/400 [00:39<00:29, 5.87it/s, v_num=1, train_loss_step=537, train_loss_epoch=519]Epoch 226/400: 56%|ββββββ | 225/400 [00:39<00:29, 5.87it/s, v_num=1, train_loss_step=537, train_loss_epoch=519]Epoch 226/400: 56%|ββββββ | 226/400 [00:40<00:29, 5.96it/s, v_num=1, train_loss_step=537, train_loss_epoch=519]Epoch 226/400: 56%|ββββββ | 226/400 [00:40<00:29, 5.96it/s, v_num=1, train_loss_step=544, train_loss_epoch=519]Epoch 227/400: 56%|ββββββ | 226/400 [00:40<00:29, 5.96it/s, v_num=1, train_loss_step=544, train_loss_epoch=519]Epoch 227/400: 57%|ββββββ | 227/400 [00:40<00:28, 5.99it/s, v_num=1, train_loss_step=544, train_loss_epoch=519]Epoch 227/400: 57%|ββββββ | 227/400 [00:40<00:28, 5.99it/s, v_num=1, train_loss_step=573, train_loss_epoch=519]Epoch 228/400: 57%|ββββββ | 227/400 [00:40<00:28, 5.99it/s, v_num=1, train_loss_step=573, train_loss_epoch=519]Epoch 228/400: 57%|ββββββ | 228/400 [00:40<00:28, 6.05it/s, v_num=1, train_loss_step=573, train_loss_epoch=519]Epoch 228/400: 57%|ββββββ | 228/400 [00:40<00:28, 6.05it/s, v_num=1, train_loss_step=528, train_loss_epoch=519]Epoch 229/400: 57%|ββββββ | 228/400 [00:40<00:28, 6.05it/s, v_num=1, train_loss_step=528, train_loss_epoch=519]Epoch 229/400: 57%|ββββββ | 229/400 [00:40<00:27, 6.12it/s, v_num=1, train_loss_step=528, train_loss_epoch=519]Epoch 229/400: 57%|ββββββ | 229/400 [00:40<00:27, 6.12it/s, v_num=1, train_loss_step=500, train_loss_epoch=518]Epoch 230/400: 57%|ββββββ | 229/400 [00:40<00:27, 6.12it/s, v_num=1, train_loss_step=500, train_loss_epoch=518]Epoch 230/400: 57%|ββββββ | 230/400 [00:40<00:27, 6.22it/s, v_num=1, train_loss_step=500, train_loss_epoch=518]Epoch 230/400: 57%|ββββββ | 230/400 [00:40<00:27, 6.22it/s, v_num=1, train_loss_step=508, train_loss_epoch=519]Epoch 231/400: 57%|ββββββ | 230/400 [00:40<00:27, 6.22it/s, v_num=1, train_loss_step=508, train_loss_epoch=519]Epoch 231/400: 58%|ββββββ | 231/400 [00:40<00:27, 6.23it/s, v_num=1, train_loss_step=508, train_loss_epoch=519]Epoch 231/400: 58%|ββββββ | 231/400 [00:40<00:27, 6.23it/s, v_num=1, train_loss_step=536, train_loss_epoch=518]Epoch 232/400: 58%|ββββββ | 231/400 [00:40<00:27, 6.23it/s, v_num=1, train_loss_step=536, train_loss_epoch=518]Epoch 232/400: 58%|ββββββ | 232/400 [00:41<00:27, 6.16it/s, v_num=1, train_loss_step=536, train_loss_epoch=518]Epoch 232/400: 58%|ββββββ | 232/400 [00:41<00:27, 6.16it/s, v_num=1, train_loss_step=500, train_loss_epoch=518]Epoch 233/400: 58%|ββββββ | 232/400 [00:41<00:27, 6.16it/s, v_num=1, train_loss_step=500, train_loss_epoch=518]Epoch 233/400: 58%|ββββββ | 233/400 [00:41<00:27, 6.07it/s, v_num=1, train_loss_step=500, train_loss_epoch=518]Epoch 233/400: 58%|ββββββ | 233/400 [00:41<00:27, 6.07it/s, v_num=1, train_loss_step=509, train_loss_epoch=518]Epoch 234/400: 58%|ββββββ | 233/400 [00:41<00:27, 6.07it/s, v_num=1, train_loss_step=509, train_loss_epoch=518]Epoch 234/400: 58%|ββββββ | 234/400 [00:41<00:28, 5.92it/s, v_num=1, train_loss_step=509, train_loss_epoch=518]Epoch 234/400: 58%|ββββββ | 234/400 [00:41<00:28, 5.92it/s, v_num=1, train_loss_step=531, train_loss_epoch=518]Epoch 235/400: 58%|ββββββ | 234/400 [00:41<00:28, 5.92it/s, v_num=1, train_loss_step=531, train_loss_epoch=518]Epoch 235/400: 59%|ββββββ | 235/400 [00:41<00:29, 5.64it/s, v_num=1, train_loss_step=531, train_loss_epoch=518]Epoch 235/400: 59%|ββββββ | 235/400 [00:41<00:29, 5.64it/s, v_num=1, train_loss_step=516, train_loss_epoch=517]Epoch 236/400: 59%|ββββββ | 235/400 [00:41<00:29, 5.64it/s, v_num=1, train_loss_step=516, train_loss_epoch=517]Epoch 236/400: 59%|ββββββ | 236/400 [00:41<00:28, 5.67it/s, v_num=1, train_loss_step=516, train_loss_epoch=517]Epoch 236/400: 59%|ββββββ | 236/400 [00:41<00:28, 5.67it/s, v_num=1, train_loss_step=523, train_loss_epoch=517]Epoch 237/400: 59%|ββββββ | 236/400 [00:41<00:28, 5.67it/s, v_num=1, train_loss_step=523, train_loss_epoch=517]Epoch 237/400: 59%|ββββββ | 237/400 [00:41<00:28, 5.78it/s, v_num=1, train_loss_step=523, train_loss_epoch=517]Epoch 237/400: 59%|ββββββ | 237/400 [00:41<00:28, 5.78it/s, v_num=1, train_loss_step=508, train_loss_epoch=518]Epoch 238/400: 59%|ββββββ | 237/400 [00:41<00:28, 5.78it/s, v_num=1, train_loss_step=508, train_loss_epoch=518]Epoch 238/400: 60%|ββββββ | 238/400 [00:42<00:27, 5.85it/s, v_num=1, train_loss_step=508, train_loss_epoch=518]Epoch 238/400: 60%|ββββββ | 238/400 [00:42<00:27, 5.85it/s, v_num=1, train_loss_step=526, train_loss_epoch=517]Epoch 239/400: 60%|ββββββ | 238/400 [00:42<00:27, 5.85it/s, v_num=1, train_loss_step=526, train_loss_epoch=517]Epoch 239/400: 60%|ββββββ | 239/400 [00:42<00:27, 5.93it/s, v_num=1, train_loss_step=526, train_loss_epoch=517]Epoch 239/400: 60%|ββββββ | 239/400 [00:42<00:27, 5.93it/s, v_num=1, train_loss_step=514, train_loss_epoch=517]Epoch 240/400: 60%|ββββββ | 239/400 [00:42<00:27, 5.93it/s, v_num=1, train_loss_step=514, train_loss_epoch=517]Epoch 240/400: 60%|ββββββ | 240/400 [00:42<00:26, 6.04it/s, v_num=1, train_loss_step=514, train_loss_epoch=517]Epoch 240/400: 60%|ββββββ | 240/400 [00:42<00:26, 6.04it/s, v_num=1, train_loss_step=518, train_loss_epoch=517]Epoch 241/400: 60%|ββββββ | 240/400 [00:42<00:26, 6.04it/s, v_num=1, train_loss_step=518, train_loss_epoch=517]Epoch 241/400: 60%|ββββββ | 241/400 [00:42<00:25, 6.16it/s, v_num=1, train_loss_step=518, train_loss_epoch=517]Epoch 241/400: 60%|ββββββ | 241/400 [00:42<00:25, 6.16it/s, v_num=1, train_loss_step=501, train_loss_epoch=517]Epoch 242/400: 60%|ββββββ | 241/400 [00:42<00:25, 6.16it/s, v_num=1, train_loss_step=501, train_loss_epoch=517]Epoch 242/400: 60%|ββββββ | 242/400 [00:42<00:26, 5.86it/s, v_num=1, train_loss_step=501, train_loss_epoch=517]Epoch 242/400: 60%|ββββββ | 242/400 [00:42<00:26, 5.86it/s, v_num=1, train_loss_step=503, train_loss_epoch=517]Epoch 243/400: 60%|ββββββ | 242/400 [00:42<00:26, 5.86it/s, v_num=1, train_loss_step=503, train_loss_epoch=517]Epoch 243/400: 61%|ββββββ | 243/400 [00:42<00:27, 5.74it/s, v_num=1, train_loss_step=503, train_loss_epoch=517]Epoch 243/400: 61%|ββββββ | 243/400 [00:42<00:27, 5.74it/s, v_num=1, train_loss_step=526, train_loss_epoch=517]Epoch 244/400: 61%|ββββββ | 243/400 [00:43<00:27, 5.74it/s, v_num=1, train_loss_step=526, train_loss_epoch=517]Epoch 244/400: 61%|ββββββ | 244/400 [00:43<00:26, 5.85it/s, v_num=1, train_loss_step=526, train_loss_epoch=517]Epoch 244/400: 61%|ββββββ | 244/400 [00:43<00:26, 5.85it/s, v_num=1, train_loss_step=514, train_loss_epoch=517]Epoch 245/400: 61%|ββββββ | 244/400 [00:43<00:26, 5.85it/s, v_num=1, train_loss_step=514, train_loss_epoch=517]Epoch 245/400: 61%|βββββββ | 245/400 [00:43<00:27, 5.59it/s, v_num=1, train_loss_step=514, train_loss_epoch=517]Epoch 245/400: 61%|βββββββ | 245/400 [00:43<00:27, 5.59it/s, v_num=1, train_loss_step=506, train_loss_epoch=517]Epoch 246/400: 61%|βββββββ | 245/400 [00:43<00:27, 5.59it/s, v_num=1, train_loss_step=506, train_loss_epoch=517]Epoch 246/400: 62%|βββββββ | 246/400 [00:43<00:26, 5.74it/s, v_num=1, train_loss_step=506, train_loss_epoch=517]Epoch 246/400: 62%|βββββββ | 246/400 [00:43<00:26, 5.74it/s, v_num=1, train_loss_step=512, train_loss_epoch=516]Epoch 247/400: 62%|βββββββ | 246/400 [00:43<00:26, 5.74it/s, v_num=1, train_loss_step=512, train_loss_epoch=516]Epoch 247/400: 62%|βββββββ | 247/400 [00:43<00:27, 5.55it/s, v_num=1, train_loss_step=512, train_loss_epoch=516]Epoch 247/400: 62%|βββββββ | 247/400 [00:43<00:27, 5.55it/s, v_num=1, train_loss_step=527, train_loss_epoch=517]Epoch 248/400: 62%|βββββββ | 247/400 [00:43<00:27, 5.55it/s, v_num=1, train_loss_step=527, train_loss_epoch=517]Epoch 248/400: 62%|βββββββ | 248/400 [00:43<00:26, 5.70it/s, v_num=1, train_loss_step=527, train_loss_epoch=517]Epoch 248/400: 62%|βββββββ | 248/400 [00:43<00:26, 5.70it/s, v_num=1, train_loss_step=471, train_loss_epoch=516]Epoch 249/400: 62%|βββββββ | 248/400 [00:43<00:26, 5.70it/s, v_num=1, train_loss_step=471, train_loss_epoch=516]Epoch 249/400: 62%|βββββββ | 249/400 [00:44<00:25, 5.81it/s, v_num=1, train_loss_step=471, train_loss_epoch=516]Epoch 249/400: 62%|βββββββ | 249/400 [00:44<00:25, 5.81it/s, v_num=1, train_loss_step=515, train_loss_epoch=516]Epoch 250/400: 62%|βββββββ | 249/400 [00:44<00:25, 5.81it/s, v_num=1, train_loss_step=515, train_loss_epoch=516]Epoch 250/400: 62%|βββββββ | 250/400 [00:44<00:26, 5.64it/s, v_num=1, train_loss_step=515, train_loss_epoch=516]Epoch 250/400: 62%|βββββββ | 250/400 [00:44<00:26, 5.64it/s, v_num=1, train_loss_step=506, train_loss_epoch=516]Epoch 251/400: 62%|βββββββ | 250/400 [00:44<00:26, 5.64it/s, v_num=1, train_loss_step=506, train_loss_epoch=516]Epoch 251/400: 63%|βββββββ | 251/400 [00:44<00:27, 5.48it/s, v_num=1, train_loss_step=506, train_loss_epoch=516]Epoch 251/400: 63%|βββββββ | 251/400 [00:44<00:27, 5.48it/s, v_num=1, train_loss_step=530, train_loss_epoch=516]Epoch 252/400: 63%|βββββββ | 251/400 [00:44<00:27, 5.48it/s, v_num=1, train_loss_step=530, train_loss_epoch=516]Epoch 252/400: 63%|βββββββ | 252/400 [00:44<00:26, 5.50it/s, v_num=1, train_loss_step=530, train_loss_epoch=516]Epoch 252/400: 63%|βββββββ | 252/400 [00:44<00:26, 5.50it/s, v_num=1, train_loss_step=538, train_loss_epoch=516]Epoch 253/400: 63%|βββββββ | 252/400 [00:44<00:26, 5.50it/s, v_num=1, train_loss_step=538, train_loss_epoch=516]Epoch 253/400: 63%|βββββββ | 253/400 [00:44<00:25, 5.73it/s, v_num=1, train_loss_step=538, train_loss_epoch=516]Epoch 253/400: 63%|βββββββ | 253/400 [00:44<00:25, 5.73it/s, v_num=1, train_loss_step=525, train_loss_epoch=516]Epoch 254/400: 63%|βββββββ | 253/400 [00:44<00:25, 5.73it/s, v_num=1, train_loss_step=525, train_loss_epoch=516]Epoch 254/400: 64%|βββββββ | 254/400 [00:44<00:26, 5.57it/s, v_num=1, train_loss_step=525, train_loss_epoch=516]Epoch 254/400: 64%|βββββββ | 254/400 [00:44<00:26, 5.57it/s, v_num=1, train_loss_step=533, train_loss_epoch=516]Epoch 255/400: 64%|βββββββ | 254/400 [00:44<00:26, 5.57it/s, v_num=1, train_loss_step=533, train_loss_epoch=516]Epoch 255/400: 64%|βββββββ | 255/400 [00:45<00:26, 5.38it/s, v_num=1, train_loss_step=533, train_loss_epoch=516]Epoch 255/400: 64%|βββββββ | 255/400 [00:45<00:26, 5.38it/s, v_num=1, train_loss_step=526, train_loss_epoch=516]Epoch 256/400: 64%|βββββββ | 255/400 [00:45<00:26, 5.38it/s, v_num=1, train_loss_step=526, train_loss_epoch=516]Epoch 256/400: 64%|βββββββ | 256/400 [00:45<00:27, 5.32it/s, v_num=1, train_loss_step=526, train_loss_epoch=516]Epoch 256/400: 64%|βββββββ | 256/400 [00:45<00:27, 5.32it/s, v_num=1, train_loss_step=522, train_loss_epoch=515]Epoch 257/400: 64%|βββββββ | 256/400 [00:45<00:27, 5.32it/s, v_num=1, train_loss_step=522, train_loss_epoch=515]Epoch 257/400: 64%|βββββββ | 257/400 [00:45<00:27, 5.25it/s, v_num=1, train_loss_step=522, train_loss_epoch=515]Epoch 257/400: 64%|βββββββ | 257/400 [00:45<00:27, 5.25it/s, v_num=1, train_loss_step=543, train_loss_epoch=515]Epoch 258/400: 64%|βββββββ | 257/400 [00:45<00:27, 5.25it/s, v_num=1, train_loss_step=543, train_loss_epoch=515]Epoch 258/400: 64%|βββββββ | 258/400 [00:45<00:26, 5.38it/s, v_num=1, train_loss_step=543, train_loss_epoch=515]Epoch 258/400: 64%|βββββββ | 258/400 [00:45<00:26, 5.38it/s, v_num=1, train_loss_step=526, train_loss_epoch=515]Epoch 259/400: 64%|βββββββ | 258/400 [00:45<00:26, 5.38it/s, v_num=1, train_loss_step=526, train_loss_epoch=515]Epoch 259/400: 65%|βββββββ | 259/400 [00:45<00:25, 5.54it/s, v_num=1, train_loss_step=526, train_loss_epoch=515]Epoch 259/400: 65%|βββββββ | 259/400 [00:45<00:25, 5.54it/s, v_num=1, train_loss_step=502, train_loss_epoch=515]Epoch 260/400: 65%|βββββββ | 259/400 [00:45<00:25, 5.54it/s, v_num=1, train_loss_step=502, train_loss_epoch=515]Epoch 260/400: 65%|βββββββ | 260/400 [00:46<00:24, 5.75it/s, v_num=1, train_loss_step=502, train_loss_epoch=515]Epoch 260/400: 65%|βββββββ | 260/400 [00:46<00:24, 5.75it/s, v_num=1, train_loss_step=556, train_loss_epoch=515]Epoch 261/400: 65%|βββββββ | 260/400 [00:46<00:24, 5.75it/s, v_num=1, train_loss_step=556, train_loss_epoch=515]Epoch 261/400: 65%|βββββββ | 261/400 [00:46<00:23, 5.94it/s, v_num=1, train_loss_step=556, train_loss_epoch=515]Epoch 261/400: 65%|βββββββ | 261/400 [00:46<00:23, 5.94it/s, v_num=1, train_loss_step=544, train_loss_epoch=515]Epoch 262/400: 65%|βββββββ | 261/400 [00:46<00:23, 5.94it/s, v_num=1, train_loss_step=544, train_loss_epoch=515]Epoch 262/400: 66%|βββββββ | 262/400 [00:46<00:23, 5.93it/s, v_num=1, train_loss_step=544, train_loss_epoch=515]Epoch 262/400: 66%|βββββββ | 262/400 [00:46<00:23, 5.93it/s, v_num=1, train_loss_step=505, train_loss_epoch=515]Epoch 263/400: 66%|βββββββ | 262/400 [00:46<00:23, 5.93it/s, v_num=1, train_loss_step=505, train_loss_epoch=515]Epoch 263/400: 66%|βββββββ | 263/400 [00:46<00:24, 5.70it/s, v_num=1, train_loss_step=505, train_loss_epoch=515]Epoch 263/400: 66%|βββββββ | 263/400 [00:46<00:24, 5.70it/s, v_num=1, train_loss_step=490, train_loss_epoch=515]Epoch 264/400: 66%|βββββββ | 263/400 [00:46<00:24, 5.70it/s, v_num=1, train_loss_step=490, train_loss_epoch=515]Epoch 264/400: 66%|βββββββ | 264/400 [00:46<00:23, 5.77it/s, v_num=1, train_loss_step=490, train_loss_epoch=515]Epoch 264/400: 66%|βββββββ | 264/400 [00:46<00:23, 5.77it/s, v_num=1, train_loss_step=543, train_loss_epoch=515]Epoch 265/400: 66%|βββββββ | 264/400 [00:46<00:23, 5.77it/s, v_num=1, train_loss_step=543, train_loss_epoch=515]Epoch 265/400: 66%|βββββββ | 265/400 [00:46<00:23, 5.81it/s, v_num=1, train_loss_step=543, train_loss_epoch=515]Epoch 265/400: 66%|βββββββ | 265/400 [00:46<00:23, 5.81it/s, v_num=1, train_loss_step=512, train_loss_epoch=515]Epoch 266/400: 66%|βββββββ | 265/400 [00:46<00:23, 5.81it/s, v_num=1, train_loss_step=512, train_loss_epoch=515]Epoch 266/400: 66%|βββββββ | 266/400 [00:47<00:22, 5.94it/s, v_num=1, train_loss_step=512, train_loss_epoch=515]Epoch 266/400: 66%|βββββββ | 266/400 [00:47<00:22, 5.94it/s, v_num=1, train_loss_step=485, train_loss_epoch=515]Epoch 267/400: 66%|βββββββ | 266/400 [00:47<00:22, 5.94it/s, v_num=1, train_loss_step=485, train_loss_epoch=515]Epoch 267/400: 67%|βββββββ | 267/400 [00:47<00:22, 6.03it/s, v_num=1, train_loss_step=485, train_loss_epoch=515]Epoch 267/400: 67%|βββββββ | 267/400 [00:47<00:22, 6.03it/s, v_num=1, train_loss_step=511, train_loss_epoch=515]Epoch 268/400: 67%|βββββββ | 267/400 [00:47<00:22, 6.03it/s, v_num=1, train_loss_step=511, train_loss_epoch=515]Epoch 268/400: 67%|βββββββ | 268/400 [00:47<00:21, 6.06it/s, v_num=1, train_loss_step=511, train_loss_epoch=515]Epoch 268/400: 67%|βββββββ | 268/400 [00:47<00:21, 6.06it/s, v_num=1, train_loss_step=503, train_loss_epoch=514]Epoch 269/400: 67%|βββββββ | 268/400 [00:47<00:21, 6.06it/s, v_num=1, train_loss_step=503, train_loss_epoch=514]Epoch 269/400: 67%|βββββββ | 269/400 [00:47<00:21, 6.07it/s, v_num=1, train_loss_step=503, train_loss_epoch=514]Epoch 269/400: 67%|βββββββ | 269/400 [00:47<00:21, 6.07it/s, v_num=1, train_loss_step=495, train_loss_epoch=514]Epoch 270/400: 67%|βββββββ | 269/400 [00:47<00:21, 6.07it/s, v_num=1, train_loss_step=495, train_loss_epoch=514]Epoch 270/400: 68%|βββββββ | 270/400 [00:47<00:21, 6.07it/s, v_num=1, train_loss_step=495, train_loss_epoch=514]Epoch 270/400: 68%|βββββββ | 270/400 [00:47<00:21, 6.07it/s, v_num=1, train_loss_step=534, train_loss_epoch=514]Epoch 271/400: 68%|βββββββ | 270/400 [00:47<00:21, 6.07it/s, v_num=1, train_loss_step=534, train_loss_epoch=514]Epoch 271/400: 68%|βββββββ | 271/400 [00:47<00:20, 6.15it/s, v_num=1, train_loss_step=534, train_loss_epoch=514]Epoch 271/400: 68%|βββββββ | 271/400 [00:47<00:20, 6.15it/s, v_num=1, train_loss_step=512, train_loss_epoch=514]Epoch 272/400: 68%|βββββββ | 271/400 [00:47<00:20, 6.15it/s, v_num=1, train_loss_step=512, train_loss_epoch=514]Epoch 272/400: 68%|βββββββ | 272/400 [00:48<00:20, 6.17it/s, v_num=1, train_loss_step=512, train_loss_epoch=514]Epoch 272/400: 68%|βββββββ | 272/400 [00:48<00:20, 6.17it/s, v_num=1, train_loss_step=535, train_loss_epoch=514]Epoch 273/400: 68%|βββββββ | 272/400 [00:48<00:20, 6.17it/s, v_num=1, train_loss_step=535, train_loss_epoch=514]Epoch 273/400: 68%|βββββββ | 273/400 [00:48<00:20, 6.20it/s, v_num=1, train_loss_step=535, train_loss_epoch=514]Epoch 273/400: 68%|βββββββ | 273/400 [00:48<00:20, 6.20it/s, v_num=1, train_loss_step=526, train_loss_epoch=514]Epoch 274/400: 68%|βββββββ | 273/400 [00:48<00:20, 6.20it/s, v_num=1, train_loss_step=526, train_loss_epoch=514]Epoch 274/400: 68%|βββββββ | 274/400 [00:48<00:20, 6.17it/s, v_num=1, train_loss_step=526, train_loss_epoch=514]Epoch 274/400: 68%|βββββββ | 274/400 [00:48<00:20, 6.17it/s, v_num=1, train_loss_step=520, train_loss_epoch=514]Epoch 275/400: 68%|βββββββ | 274/400 [00:48<00:20, 6.17it/s, v_num=1, train_loss_step=520, train_loss_epoch=514]Epoch 275/400: 69%|βββββββ | 275/400 [00:48<00:20, 6.13it/s, v_num=1, train_loss_step=520, train_loss_epoch=514]Epoch 275/400: 69%|βββββββ | 275/400 [00:48<00:20, 6.13it/s, v_num=1, train_loss_step=512, train_loss_epoch=514]Epoch 276/400: 69%|βββββββ | 275/400 [00:48<00:20, 6.13it/s, v_num=1, train_loss_step=512, train_loss_epoch=514]Epoch 276/400: 69%|βββββββ | 276/400 [00:48<00:20, 6.11it/s, v_num=1, train_loss_step=512, train_loss_epoch=514]Epoch 276/400: 69%|βββββββ | 276/400 [00:48<00:20, 6.11it/s, v_num=1, train_loss_step=496, train_loss_epoch=514]Epoch 277/400: 69%|βββββββ | 276/400 [00:48<00:20, 6.11it/s, v_num=1, train_loss_step=496, train_loss_epoch=514]Epoch 277/400: 69%|βββββββ | 277/400 [00:48<00:21, 5.65it/s, v_num=1, train_loss_step=496, train_loss_epoch=514]Epoch 277/400: 69%|βββββββ | 277/400 [00:48<00:21, 5.65it/s, v_num=1, train_loss_step=522, train_loss_epoch=513]Epoch 278/400: 69%|βββββββ | 277/400 [00:48<00:21, 5.65it/s, v_num=1, train_loss_step=522, train_loss_epoch=513]Epoch 278/400: 70%|βββββββ | 278/400 [00:49<00:22, 5.41it/s, v_num=1, train_loss_step=522, train_loss_epoch=513]Epoch 278/400: 70%|βββββββ | 278/400 [00:49<00:22, 5.41it/s, v_num=1, train_loss_step=512, train_loss_epoch=513]Epoch 279/400: 70%|βββββββ | 278/400 [00:49<00:22, 5.41it/s, v_num=1, train_loss_step=512, train_loss_epoch=513]Epoch 279/400: 70%|βββββββ | 279/400 [00:49<00:22, 5.36it/s, v_num=1, train_loss_step=512, train_loss_epoch=513]Epoch 279/400: 70%|βββββββ | 279/400 [00:49<00:22, 5.36it/s, v_num=1, train_loss_step=493, train_loss_epoch=514]Epoch 280/400: 70%|βββββββ | 279/400 [00:49<00:22, 5.36it/s, v_num=1, train_loss_step=493, train_loss_epoch=514]Epoch 280/400: 70%|βββββββ | 280/400 [00:49<00:21, 5.50it/s, v_num=1, train_loss_step=493, train_loss_epoch=514]Epoch 280/400: 70%|βββββββ | 280/400 [00:49<00:21, 5.50it/s, v_num=1, train_loss_step=512, train_loss_epoch=513]Epoch 281/400: 70%|βββββββ | 280/400 [00:49<00:21, 5.50it/s, v_num=1, train_loss_step=512, train_loss_epoch=513]Epoch 281/400: 70%|βββββββ | 281/400 [00:49<00:22, 5.41it/s, v_num=1, train_loss_step=512, train_loss_epoch=513]Epoch 281/400: 70%|βββββββ | 281/400 [00:49<00:22, 5.41it/s, v_num=1, train_loss_step=501, train_loss_epoch=513]Epoch 282/400: 70%|βββββββ | 281/400 [00:49<00:22, 5.41it/s, v_num=1, train_loss_step=501, train_loss_epoch=513]Epoch 282/400: 70%|βββββββ | 282/400 [00:49<00:22, 5.24it/s, v_num=1, train_loss_step=501, train_loss_epoch=513]Epoch 282/400: 70%|βββββββ | 282/400 [00:49<00:22, 5.24it/s, v_num=1, train_loss_step=536, train_loss_epoch=513]Epoch 283/400: 70%|βββββββ | 282/400 [00:49<00:22, 5.24it/s, v_num=1, train_loss_step=536, train_loss_epoch=513]Epoch 283/400: 71%|βββββββ | 283/400 [00:50<00:22, 5.23it/s, v_num=1, train_loss_step=536, train_loss_epoch=513]Epoch 283/400: 71%|βββββββ | 283/400 [00:50<00:22, 5.23it/s, v_num=1, train_loss_step=528, train_loss_epoch=513]Epoch 284/400: 71%|βββββββ | 283/400 [00:50<00:22, 5.23it/s, v_num=1, train_loss_step=528, train_loss_epoch=513]Epoch 284/400: 71%|βββββββ | 284/400 [00:50<00:21, 5.41it/s, v_num=1, train_loss_step=528, train_loss_epoch=513]Epoch 284/400: 71%|βββββββ | 284/400 [00:50<00:21, 5.41it/s, v_num=1, train_loss_step=538, train_loss_epoch=513]Epoch 285/400: 71%|βββββββ | 284/400 [00:50<00:21, 5.41it/s, v_num=1, train_loss_step=538, train_loss_epoch=513]Epoch 285/400: 71%|ββββββββ | 285/400 [00:50<00:21, 5.46it/s, v_num=1, train_loss_step=538, train_loss_epoch=513]Epoch 285/400: 71%|ββββββββ | 285/400 [00:50<00:21, 5.46it/s, v_num=1, train_loss_step=528, train_loss_epoch=513]Epoch 286/400: 71%|ββββββββ | 285/400 [00:50<00:21, 5.46it/s, v_num=1, train_loss_step=528, train_loss_epoch=513]Epoch 286/400: 72%|ββββββββ | 286/400 [00:50<00:20, 5.56it/s, v_num=1, train_loss_step=528, train_loss_epoch=513]Epoch 286/400: 72%|ββββββββ | 286/400 [00:50<00:20, 5.56it/s, v_num=1, train_loss_step=536, train_loss_epoch=513]Epoch 287/400: 72%|ββββββββ | 286/400 [00:50<00:20, 5.56it/s, v_num=1, train_loss_step=536, train_loss_epoch=513]Epoch 287/400: 72%|ββββββββ | 287/400 [00:50<00:21, 5.37it/s, v_num=1, train_loss_step=536, train_loss_epoch=513]Epoch 287/400: 72%|ββββββββ | 287/400 [00:50<00:21, 5.37it/s, v_num=1, train_loss_step=549, train_loss_epoch=512]Epoch 288/400: 72%|ββββββββ | 287/400 [00:50<00:21, 5.37it/s, v_num=1, train_loss_step=549, train_loss_epoch=512]Epoch 288/400: 72%|ββββββββ | 288/400 [00:50<00:21, 5.20it/s, v_num=1, train_loss_step=549, train_loss_epoch=512]Epoch 288/400: 72%|ββββββββ | 288/400 [00:50<00:21, 5.20it/s, v_num=1, train_loss_step=505, train_loss_epoch=513]Epoch 289/400: 72%|ββββββββ | 288/400 [00:50<00:21, 5.20it/s, v_num=1, train_loss_step=505, train_loss_epoch=513]Epoch 289/400: 72%|ββββββββ | 289/400 [00:51<00:21, 5.22it/s, v_num=1, train_loss_step=505, train_loss_epoch=513]Epoch 289/400: 72%|ββββββββ | 289/400 [00:51<00:21, 5.22it/s, v_num=1, train_loss_step=513, train_loss_epoch=512]Epoch 290/400: 72%|ββββββββ | 289/400 [00:51<00:21, 5.22it/s, v_num=1, train_loss_step=513, train_loss_epoch=512]Epoch 290/400: 72%|ββββββββ | 290/400 [00:51<00:20, 5.32it/s, v_num=1, train_loss_step=513, train_loss_epoch=512]Epoch 290/400: 72%|ββββββββ | 290/400 [00:51<00:20, 5.32it/s, v_num=1, train_loss_step=513, train_loss_epoch=513]Epoch 291/400: 72%|ββββββββ | 290/400 [00:51<00:20, 5.32it/s, v_num=1, train_loss_step=513, train_loss_epoch=513]Epoch 291/400: 73%|ββββββββ | 291/400 [00:51<00:19, 5.46it/s, v_num=1, train_loss_step=513, train_loss_epoch=513]Epoch 291/400: 73%|ββββββββ | 291/400 [00:51<00:19, 5.46it/s, v_num=1, train_loss_step=549, train_loss_epoch=512]Epoch 292/400: 73%|ββββββββ | 291/400 [00:51<00:19, 5.46it/s, v_num=1, train_loss_step=549, train_loss_epoch=512]Epoch 292/400: 73%|ββββββββ | 292/400 [00:51<00:19, 5.45it/s, v_num=1, train_loss_step=549, train_loss_epoch=512]Epoch 292/400: 73%|ββββββββ | 292/400 [00:51<00:19, 5.45it/s, v_num=1, train_loss_step=492, train_loss_epoch=512]Epoch 293/400: 73%|ββββββββ | 292/400 [00:51<00:19, 5.45it/s, v_num=1, train_loss_step=492, train_loss_epoch=512]Epoch 293/400: 73%|ββββββββ | 293/400 [00:51<00:19, 5.43it/s, v_num=1, train_loss_step=492, train_loss_epoch=512]Epoch 293/400: 73%|ββββββββ | 293/400 [00:51<00:19, 5.43it/s, v_num=1, train_loss_step=491, train_loss_epoch=512]Epoch 294/400: 73%|ββββββββ | 293/400 [00:51<00:19, 5.43it/s, v_num=1, train_loss_step=491, train_loss_epoch=512]Epoch 294/400: 74%|ββββββββ | 294/400 [00:52<00:19, 5.39it/s, v_num=1, train_loss_step=491, train_loss_epoch=512]Epoch 294/400: 74%|ββββββββ | 294/400 [00:52<00:19, 5.39it/s, v_num=1, train_loss_step=528, train_loss_epoch=512]Epoch 295/400: 74%|ββββββββ | 294/400 [00:52<00:19, 5.39it/s, v_num=1, train_loss_step=528, train_loss_epoch=512]Epoch 295/400: 74%|ββββββββ | 295/400 [00:52<00:18, 5.59it/s, v_num=1, train_loss_step=528, train_loss_epoch=512]Epoch 295/400: 74%|ββββββββ | 295/400 [00:52<00:18, 5.59it/s, v_num=1, train_loss_step=540, train_loss_epoch=512]Epoch 296/400: 74%|ββββββββ | 295/400 [00:52<00:18, 5.59it/s, v_num=1, train_loss_step=540, train_loss_epoch=512]Epoch 296/400: 74%|ββββββββ | 296/400 [00:52<00:18, 5.78it/s, v_num=1, train_loss_step=540, train_loss_epoch=512]Epoch 296/400: 74%|ββββββββ | 296/400 [00:52<00:18, 5.78it/s, v_num=1, train_loss_step=544, train_loss_epoch=513]Epoch 297/400: 74%|ββββββββ | 296/400 [00:52<00:18, 5.78it/s, v_num=1, train_loss_step=544, train_loss_epoch=513]Epoch 297/400: 74%|ββββββββ | 297/400 [00:52<00:17, 5.90it/s, v_num=1, train_loss_step=544, train_loss_epoch=513]Epoch 297/400: 74%|ββββββββ | 297/400 [00:52<00:17, 5.90it/s, v_num=1, train_loss_step=489, train_loss_epoch=512]Epoch 298/400: 74%|ββββββββ | 297/400 [00:52<00:17, 5.90it/s, v_num=1, train_loss_step=489, train_loss_epoch=512]Epoch 298/400: 74%|ββββββββ | 298/400 [00:52<00:17, 5.96it/s, v_num=1, train_loss_step=489, train_loss_epoch=512]Epoch 298/400: 74%|ββββββββ | 298/400 [00:52<00:17, 5.96it/s, v_num=1, train_loss_step=511, train_loss_epoch=512]Epoch 299/400: 74%|ββββββββ | 298/400 [00:52<00:17, 5.96it/s, v_num=1, train_loss_step=511, train_loss_epoch=512]Epoch 299/400: 75%|ββββββββ | 299/400 [00:52<00:17, 5.88it/s, v_num=1, train_loss_step=511, train_loss_epoch=512]Epoch 299/400: 75%|ββββββββ | 299/400 [00:52<00:17, 5.88it/s, v_num=1, train_loss_step=518, train_loss_epoch=513]Epoch 300/400: 75%|ββββββββ | 299/400 [00:52<00:17, 5.88it/s, v_num=1, train_loss_step=518, train_loss_epoch=513]Epoch 300/400: 75%|ββββββββ | 300/400 [00:53<00:18, 5.50it/s, v_num=1, train_loss_step=518, train_loss_epoch=513]Epoch 300/400: 75%|ββββββββ | 300/400 [00:53<00:18, 5.50it/s, v_num=1, train_loss_step=517, train_loss_epoch=512]Epoch 301/400: 75%|ββββββββ | 300/400 [00:53<00:18, 5.50it/s, v_num=1, train_loss_step=517, train_loss_epoch=512]Epoch 301/400: 75%|ββββββββ | 301/400 [00:53<00:17, 5.60it/s, v_num=1, train_loss_step=517, train_loss_epoch=512]Epoch 301/400: 75%|ββββββββ | 301/400 [00:53<00:17, 5.60it/s, v_num=1, train_loss_step=550, train_loss_epoch=512]Epoch 302/400: 75%|ββββββββ | 301/400 [00:53<00:17, 5.60it/s, v_num=1, train_loss_step=550, train_loss_epoch=512]Epoch 302/400: 76%|ββββββββ | 302/400 [00:53<00:17, 5.75it/s, v_num=1, train_loss_step=550, train_loss_epoch=512]Epoch 302/400: 76%|ββββββββ | 302/400 [00:53<00:17, 5.75it/s, v_num=1, train_loss_step=522, train_loss_epoch=512]Epoch 303/400: 76%|ββββββββ | 302/400 [00:53<00:17, 5.75it/s, v_num=1, train_loss_step=522, train_loss_epoch=512]Epoch 303/400: 76%|ββββββββ | 303/400 [00:53<00:16, 5.79it/s, v_num=1, train_loss_step=522, train_loss_epoch=512]Epoch 303/400: 76%|ββββββββ | 303/400 [00:53<00:16, 5.79it/s, v_num=1, train_loss_step=510, train_loss_epoch=511]Epoch 304/400: 76%|ββββββββ | 303/400 [00:53<00:16, 5.79it/s, v_num=1, train_loss_step=510, train_loss_epoch=511]Epoch 304/400: 76%|ββββββββ | 304/400 [00:53<00:16, 5.86it/s, v_num=1, train_loss_step=510, train_loss_epoch=511]Epoch 304/400: 76%|ββββββββ | 304/400 [00:53<00:16, 5.86it/s, v_num=1, train_loss_step=492, train_loss_epoch=512]Epoch 305/400: 76%|ββββββββ | 304/400 [00:53<00:16, 5.86it/s, v_num=1, train_loss_step=492, train_loss_epoch=512]Epoch 305/400: 76%|ββββββββ | 305/400 [00:53<00:16, 5.60it/s, v_num=1, train_loss_step=492, train_loss_epoch=512]Epoch 305/400: 76%|ββββββββ | 305/400 [00:53<00:16, 5.60it/s, v_num=1, train_loss_step=489, train_loss_epoch=512]Epoch 306/400: 76%|ββββββββ | 305/400 [00:53<00:16, 5.60it/s, v_num=1, train_loss_step=489, train_loss_epoch=512]Epoch 306/400: 76%|ββββββββ | 306/400 [00:54<00:17, 5.42it/s, v_num=1, train_loss_step=489, train_loss_epoch=512]Epoch 306/400: 76%|ββββββββ | 306/400 [00:54<00:17, 5.42it/s, v_num=1, train_loss_step=505, train_loss_epoch=511]Epoch 307/400: 76%|ββββββββ | 306/400 [00:54<00:17, 5.42it/s, v_num=1, train_loss_step=505, train_loss_epoch=511]Epoch 307/400: 77%|ββββββββ | 307/400 [00:54<00:17, 5.25it/s, v_num=1, train_loss_step=505, train_loss_epoch=511]Epoch 307/400: 77%|ββββββββ | 307/400 [00:54<00:17, 5.25it/s, v_num=1, train_loss_step=533, train_loss_epoch=511]Epoch 308/400: 77%|ββββββββ | 307/400 [00:54<00:17, 5.25it/s, v_num=1, train_loss_step=533, train_loss_epoch=511]Epoch 308/400: 77%|ββββββββ | 308/400 [00:54<00:17, 5.16it/s, v_num=1, train_loss_step=533, train_loss_epoch=511]Epoch 308/400: 77%|ββββββββ | 308/400 [00:54<00:17, 5.16it/s, v_num=1, train_loss_step=498, train_loss_epoch=511]Epoch 309/400: 77%|ββββββββ | 308/400 [00:54<00:17, 5.16it/s, v_num=1, train_loss_step=498, train_loss_epoch=511]Epoch 309/400: 77%|ββββββββ | 309/400 [00:54<00:17, 5.21it/s, v_num=1, train_loss_step=498, train_loss_epoch=511]Epoch 309/400: 77%|ββββββββ | 309/400 [00:54<00:17, 5.21it/s, v_num=1, train_loss_step=520, train_loss_epoch=512]Epoch 310/400: 77%|ββββββββ | 309/400 [00:54<00:17, 5.21it/s, v_num=1, train_loss_step=520, train_loss_epoch=512]Epoch 310/400: 78%|ββββββββ | 310/400 [00:54<00:16, 5.34it/s, v_num=1, train_loss_step=520, train_loss_epoch=512]Epoch 310/400: 78%|ββββββββ | 310/400 [00:54<00:16, 5.34it/s, v_num=1, train_loss_step=511, train_loss_epoch=511]Epoch 311/400: 78%|ββββββββ | 310/400 [00:54<00:16, 5.34it/s, v_num=1, train_loss_step=511, train_loss_epoch=511]Epoch 311/400: 78%|ββββββββ | 311/400 [00:55<00:16, 5.48it/s, v_num=1, train_loss_step=511, train_loss_epoch=511]Epoch 311/400: 78%|ββββββββ | 311/400 [00:55<00:16, 5.48it/s, v_num=1, train_loss_step=554, train_loss_epoch=511]Epoch 312/400: 78%|ββββββββ | 311/400 [00:55<00:16, 5.48it/s, v_num=1, train_loss_step=554, train_loss_epoch=511]Epoch 312/400: 78%|ββββββββ | 312/400 [00:55<00:16, 5.46it/s, v_num=1, train_loss_step=554, train_loss_epoch=511]Epoch 312/400: 78%|ββββββββ | 312/400 [00:55<00:16, 5.46it/s, v_num=1, train_loss_step=518, train_loss_epoch=511]Epoch 313/400: 78%|ββββββββ | 312/400 [00:55<00:16, 5.46it/s, v_num=1, train_loss_step=518, train_loss_epoch=511]Epoch 313/400: 78%|ββββββββ | 313/400 [00:55<00:15, 5.64it/s, v_num=1, train_loss_step=518, train_loss_epoch=511]Epoch 313/400: 78%|ββββββββ | 313/400 [00:55<00:15, 5.64it/s, v_num=1, train_loss_step=539, train_loss_epoch=511]Epoch 314/400: 78%|ββββββββ | 313/400 [00:55<00:15, 5.64it/s, v_num=1, train_loss_step=539, train_loss_epoch=511]Epoch 314/400: 78%|ββββββββ | 314/400 [00:55<00:15, 5.63it/s, v_num=1, train_loss_step=539, train_loss_epoch=511]Epoch 314/400: 78%|ββββββββ | 314/400 [00:55<00:15, 5.63it/s, v_num=1, train_loss_step=532, train_loss_epoch=511]Epoch 315/400: 78%|ββββββββ | 314/400 [00:55<00:15, 5.63it/s, v_num=1, train_loss_step=532, train_loss_epoch=511]Epoch 315/400: 79%|ββββββββ | 315/400 [00:55<00:14, 5.75it/s, v_num=1, train_loss_step=532, train_loss_epoch=511]Epoch 315/400: 79%|ββββββββ | 315/400 [00:55<00:14, 5.75it/s, v_num=1, train_loss_step=529, train_loss_epoch=511]Epoch 316/400: 79%|ββββββββ | 315/400 [00:55<00:14, 5.75it/s, v_num=1, train_loss_step=529, train_loss_epoch=511]Epoch 316/400: 79%|ββββββββ | 316/400 [00:55<00:14, 5.60it/s, v_num=1, train_loss_step=529, train_loss_epoch=511]Epoch 316/400: 79%|ββββββββ | 316/400 [00:55<00:14, 5.60it/s, v_num=1, train_loss_step=516, train_loss_epoch=510]Epoch 317/400: 79%|ββββββββ | 316/400 [00:56<00:14, 5.60it/s, v_num=1, train_loss_step=516, train_loss_epoch=510]Epoch 317/400: 79%|ββββββββ | 317/400 [00:56<00:14, 5.56it/s, v_num=1, train_loss_step=516, train_loss_epoch=510]Epoch 317/400: 79%|ββββββββ | 317/400 [00:56<00:14, 5.56it/s, v_num=1, train_loss_step=522, train_loss_epoch=511]Epoch 318/400: 79%|ββββββββ | 317/400 [00:56<00:14, 5.56it/s, v_num=1, train_loss_step=522, train_loss_epoch=511]Epoch 318/400: 80%|ββββββββ | 318/400 [00:56<00:14, 5.47it/s, v_num=1, train_loss_step=522, train_loss_epoch=511]Epoch 318/400: 80%|ββββββββ | 318/400 [00:56<00:14, 5.47it/s, v_num=1, train_loss_step=523, train_loss_epoch=511]Epoch 319/400: 80%|ββββββββ | 318/400 [00:56<00:14, 5.47it/s, v_num=1, train_loss_step=523, train_loss_epoch=511]Epoch 319/400: 80%|ββββββββ | 319/400 [00:56<00:14, 5.52it/s, v_num=1, train_loss_step=523, train_loss_epoch=511]Epoch 319/400: 80%|ββββββββ | 319/400 [00:56<00:14, 5.52it/s, v_num=1, train_loss_step=516, train_loss_epoch=510]Epoch 320/400: 80%|ββββββββ | 319/400 [00:56<00:14, 5.52it/s, v_num=1, train_loss_step=516, train_loss_epoch=510]Epoch 320/400: 80%|ββββββββ | 320/400 [00:56<00:13, 5.72it/s, v_num=1, train_loss_step=516, train_loss_epoch=510]Epoch 320/400: 80%|ββββββββ | 320/400 [00:56<00:13, 5.72it/s, v_num=1, train_loss_step=526, train_loss_epoch=511]Epoch 321/400: 80%|ββββββββ | 320/400 [00:56<00:13, 5.72it/s, v_num=1, train_loss_step=526, train_loss_epoch=511]Epoch 321/400: 80%|ββββββββ | 321/400 [00:56<00:13, 5.91it/s, v_num=1, train_loss_step=526, train_loss_epoch=511]Epoch 321/400: 80%|ββββββββ | 321/400 [00:56<00:13, 5.91it/s, v_num=1, train_loss_step=500, train_loss_epoch=510]Epoch 322/400: 80%|ββββββββ | 321/400 [00:56<00:13, 5.91it/s, v_num=1, train_loss_step=500, train_loss_epoch=510]Epoch 322/400: 80%|ββββββββ | 322/400 [00:57<00:13, 5.78it/s, v_num=1, train_loss_step=500, train_loss_epoch=510]Epoch 322/400: 80%|ββββββββ | 322/400 [00:57<00:13, 5.78it/s, v_num=1, train_loss_step=502, train_loss_epoch=511]Epoch 323/400: 80%|ββββββββ | 322/400 [00:57<00:13, 5.78it/s, v_num=1, train_loss_step=502, train_loss_epoch=511]Epoch 323/400: 81%|ββββββββ | 323/400 [00:57<00:13, 5.91it/s, v_num=1, train_loss_step=502, train_loss_epoch=511]Epoch 323/400: 81%|ββββββββ | 323/400 [00:57<00:13, 5.91it/s, v_num=1, train_loss_step=508, train_loss_epoch=511]Epoch 324/400: 81%|ββββββββ | 323/400 [00:57<00:13, 5.91it/s, v_num=1, train_loss_step=508, train_loss_epoch=511]Epoch 324/400: 81%|ββββββββ | 324/400 [00:57<00:12, 6.00it/s, v_num=1, train_loss_step=508, train_loss_epoch=511]Epoch 324/400: 81%|ββββββββ | 324/400 [00:57<00:12, 6.00it/s, v_num=1, train_loss_step=493, train_loss_epoch=511]Epoch 325/400: 81%|ββββββββ | 324/400 [00:57<00:12, 6.00it/s, v_num=1, train_loss_step=493, train_loss_epoch=511]Epoch 325/400: 81%|βββββββββ | 325/400 [00:57<00:12, 6.03it/s, v_num=1, train_loss_step=493, train_loss_epoch=511]Epoch 325/400: 81%|βββββββββ | 325/400 [00:57<00:12, 6.03it/s, v_num=1, train_loss_step=495, train_loss_epoch=510]Epoch 326/400: 81%|βββββββββ | 325/400 [00:57<00:12, 6.03it/s, v_num=1, train_loss_step=495, train_loss_epoch=510]Epoch 326/400: 82%|βββββββββ | 326/400 [00:57<00:12, 6.09it/s, v_num=1, train_loss_step=495, train_loss_epoch=510]Epoch 326/400: 82%|βββββββββ | 326/400 [00:57<00:12, 6.09it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 327/400: 82%|βββββββββ | 326/400 [00:57<00:12, 6.09it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 327/400: 82%|βββββββββ | 327/400 [00:57<00:12, 6.07it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 327/400: 82%|βββββββββ | 327/400 [00:57<00:12, 6.07it/s, v_num=1, train_loss_step=513, train_loss_epoch=510]Epoch 328/400: 82%|βββββββββ | 327/400 [00:57<00:12, 6.07it/s, v_num=1, train_loss_step=513, train_loss_epoch=510]Epoch 328/400: 82%|βββββββββ | 328/400 [00:58<00:12, 5.95it/s, v_num=1, train_loss_step=513, train_loss_epoch=510]Epoch 328/400: 82%|βββββββββ | 328/400 [00:58<00:12, 5.95it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 329/400: 82%|βββββββββ | 328/400 [00:58<00:12, 5.95it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 329/400: 82%|βββββββββ | 329/400 [00:58<00:12, 5.87it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 329/400: 82%|βββββββββ | 329/400 [00:58<00:12, 5.87it/s, v_num=1, train_loss_step=517, train_loss_epoch=510]Epoch 330/400: 82%|βββββββββ | 329/400 [00:58<00:12, 5.87it/s, v_num=1, train_loss_step=517, train_loss_epoch=510]Epoch 330/400: 82%|βββββββββ | 330/400 [00:58<00:11, 5.91it/s, v_num=1, train_loss_step=517, train_loss_epoch=510]Epoch 330/400: 82%|βββββββββ | 330/400 [00:58<00:11, 5.91it/s, v_num=1, train_loss_step=498, train_loss_epoch=510]Epoch 331/400: 82%|βββββββββ | 330/400 [00:58<00:11, 5.91it/s, v_num=1, train_loss_step=498, train_loss_epoch=510]Epoch 331/400: 83%|βββββββββ | 331/400 [00:58<00:11, 5.84it/s, v_num=1, train_loss_step=498, train_loss_epoch=510]Epoch 331/400: 83%|βββββββββ | 331/400 [00:58<00:11, 5.84it/s, v_num=1, train_loss_step=490, train_loss_epoch=511]Epoch 332/400: 83%|βββββββββ | 331/400 [00:58<00:11, 5.84it/s, v_num=1, train_loss_step=490, train_loss_epoch=511]Epoch 332/400: 83%|βββββββββ | 332/400 [00:58<00:11, 5.87it/s, v_num=1, train_loss_step=490, train_loss_epoch=511]Epoch 332/400: 83%|βββββββββ | 332/400 [00:58<00:11, 5.87it/s, v_num=1, train_loss_step=493, train_loss_epoch=510]Epoch 333/400: 83%|βββββββββ | 332/400 [00:58<00:11, 5.87it/s, v_num=1, train_loss_step=493, train_loss_epoch=510]Epoch 333/400: 83%|βββββββββ | 333/400 [00:58<00:11, 5.63it/s, v_num=1, train_loss_step=493, train_loss_epoch=510]Epoch 333/400: 83%|βββββββββ | 333/400 [00:58<00:11, 5.63it/s, v_num=1, train_loss_step=504, train_loss_epoch=510]Epoch 334/400: 83%|βββββββββ | 333/400 [00:58<00:11, 5.63it/s, v_num=1, train_loss_step=504, train_loss_epoch=510]Epoch 334/400: 84%|βββββββββ | 334/400 [00:59<00:12, 5.46it/s, v_num=1, train_loss_step=504, train_loss_epoch=510]Epoch 334/400: 84%|βββββββββ | 334/400 [00:59<00:12, 5.46it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 335/400: 84%|βββββββββ | 334/400 [00:59<00:12, 5.46it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 335/400: 84%|βββββββββ | 335/400 [00:59<00:11, 5.45it/s, v_num=1, train_loss_step=506, train_loss_epoch=510]Epoch 335/400: 84%|βββββββββ | 335/400 [00:59<00:11, 5.45it/s, v_num=1, train_loss_step=510, train_loss_epoch=510]Epoch 336/400: 84%|βββββββββ | 335/400 [00:59<00:11, 5.45it/s, v_num=1, train_loss_step=510, train_loss_epoch=510]Epoch 336/400: 84%|βββββββββ | 336/400 [00:59<00:11, 5.69it/s, v_num=1, train_loss_step=510, train_loss_epoch=510]Epoch 336/400: 84%|βββββββββ | 336/400 [00:59<00:11, 5.69it/s, v_num=1, train_loss_step=523, train_loss_epoch=509]Epoch 337/400: 84%|βββββββββ | 336/400 [00:59<00:11, 5.69it/s, v_num=1, train_loss_step=523, train_loss_epoch=509]Epoch 337/400: 84%|βββββββββ | 337/400 [00:59<00:11, 5.72it/s, v_num=1, train_loss_step=523, train_loss_epoch=509]Epoch 337/400: 84%|βββββββββ | 337/400 [00:59<00:11, 5.72it/s, v_num=1, train_loss_step=525, train_loss_epoch=510]Epoch 338/400: 84%|βββββββββ | 337/400 [00:59<00:11, 5.72it/s, v_num=1, train_loss_step=525, train_loss_epoch=510]Epoch 338/400: 84%|βββββββββ | 338/400 [00:59<00:10, 5.83it/s, v_num=1, train_loss_step=525, train_loss_epoch=510]Epoch 338/400: 84%|βββββββββ | 338/400 [00:59<00:10, 5.83it/s, v_num=1, train_loss_step=517, train_loss_epoch=510]Epoch 339/400: 84%|βββββββββ | 338/400 [00:59<00:10, 5.83it/s, v_num=1, train_loss_step=517, train_loss_epoch=510]Epoch 339/400: 85%|βββββββββ | 339/400 [00:59<00:10, 5.73it/s, v_num=1, train_loss_step=517, train_loss_epoch=510]Epoch 339/400: 85%|βββββββββ | 339/400 [00:59<00:10, 5.73it/s, v_num=1, train_loss_step=536, train_loss_epoch=510]Epoch 340/400: 85%|βββββββββ | 339/400 [00:59<00:10, 5.73it/s, v_num=1, train_loss_step=536, train_loss_epoch=510]Epoch 340/400: 85%|βββββββββ | 340/400 [01:00<00:10, 5.83it/s, v_num=1, train_loss_step=536, train_loss_epoch=510]Epoch 340/400: 85%|βββββββββ | 340/400 [01:00<00:10, 5.83it/s, v_num=1, train_loss_step=496, train_loss_epoch=509]Epoch 341/400: 85%|βββββββββ | 340/400 [01:00<00:10, 5.83it/s, v_num=1, train_loss_step=496, train_loss_epoch=509]Epoch 341/400: 85%|βββββββββ | 341/400 [01:00<00:10, 5.66it/s, v_num=1, train_loss_step=496, train_loss_epoch=509]Epoch 341/400: 85%|βββββββββ | 341/400 [01:00<00:10, 5.66it/s, v_num=1, train_loss_step=501, train_loss_epoch=510]Epoch 342/400: 85%|βββββββββ | 341/400 [01:00<00:10, 5.66it/s, v_num=1, train_loss_step=501, train_loss_epoch=510]Epoch 342/400: 86%|βββββββββ | 342/400 [01:00<00:10, 5.36it/s, v_num=1, train_loss_step=501, train_loss_epoch=510]Epoch 342/400: 86%|βββββββββ | 342/400 [01:00<00:10, 5.36it/s, v_num=1, train_loss_step=515, train_loss_epoch=509]Epoch 343/400: 86%|βββββββββ | 342/400 [01:00<00:10, 5.36it/s, v_num=1, train_loss_step=515, train_loss_epoch=509]Epoch 343/400: 86%|βββββββββ | 343/400 [01:00<00:10, 5.26it/s, v_num=1, train_loss_step=515, train_loss_epoch=509]Epoch 343/400: 86%|βββββββββ | 343/400 [01:00<00:10, 5.26it/s, v_num=1, train_loss_step=541, train_loss_epoch=510]Epoch 344/400: 86%|βββββββββ | 343/400 [01:00<00:10, 5.26it/s, v_num=1, train_loss_step=541, train_loss_epoch=510]Epoch 344/400: 86%|βββββββββ | 344/400 [01:00<00:10, 5.31it/s, v_num=1, train_loss_step=541, train_loss_epoch=510]Epoch 344/400: 86%|βββββββββ | 344/400 [01:00<00:10, 5.31it/s, v_num=1, train_loss_step=498, train_loss_epoch=510]Epoch 345/400: 86%|βββββββββ | 344/400 [01:00<00:10, 5.31it/s, v_num=1, train_loss_step=498, train_loss_epoch=510]Epoch 345/400: 86%|βββββββββ | 345/400 [01:01<00:10, 5.25it/s, v_num=1, train_loss_step=498, train_loss_epoch=510]Epoch 345/400: 86%|βββββββββ | 345/400 [01:01<00:10, 5.25it/s, v_num=1, train_loss_step=493, train_loss_epoch=509]Epoch 346/400: 86%|βββββββββ | 345/400 [01:01<00:10, 5.25it/s, v_num=1, train_loss_step=493, train_loss_epoch=509]Epoch 346/400: 86%|βββββββββ | 346/400 [01:01<00:10, 5.16it/s, v_num=1, train_loss_step=493, train_loss_epoch=509]Epoch 346/400: 86%|βββββββββ | 346/400 [01:01<00:10, 5.16it/s, v_num=1, train_loss_step=488, train_loss_epoch=509]Epoch 347/400: 86%|βββββββββ | 346/400 [01:01<00:10, 5.16it/s, v_num=1, train_loss_step=488, train_loss_epoch=509]Epoch 347/400: 87%|βββββββββ | 347/400 [01:01<00:10, 5.06it/s, v_num=1, train_loss_step=488, train_loss_epoch=509]Epoch 347/400: 87%|βββββββββ | 347/400 [01:01<00:10, 5.06it/s, v_num=1, train_loss_step=492, train_loss_epoch=510]Epoch 348/400: 87%|βββββββββ | 347/400 [01:01<00:10, 5.06it/s, v_num=1, train_loss_step=492, train_loss_epoch=510]Epoch 348/400: 87%|βββββββββ | 348/400 [01:01<00:10, 5.03it/s, v_num=1, train_loss_step=492, train_loss_epoch=510]Epoch 348/400: 87%|βββββββββ | 348/400 [01:01<00:10, 5.03it/s, v_num=1, train_loss_step=517, train_loss_epoch=509]Epoch 349/400: 87%|βββββββββ | 348/400 [01:01<00:10, 5.03it/s, v_num=1, train_loss_step=517, train_loss_epoch=509]Epoch 349/400: 87%|βββββββββ | 349/400 [01:01<00:09, 5.37it/s, v_num=1, train_loss_step=517, train_loss_epoch=509]Epoch 349/400: 87%|βββββββββ | 349/400 [01:01<00:09, 5.37it/s, v_num=1, train_loss_step=516, train_loss_epoch=509]Epoch 350/400: 87%|βββββββββ | 349/400 [01:01<00:09, 5.37it/s, v_num=1, train_loss_step=516, train_loss_epoch=509]Epoch 350/400: 88%|βββββββββ | 350/400 [01:02<00:09, 5.41it/s, v_num=1, train_loss_step=516, train_loss_epoch=509]Epoch 350/400: 88%|βββββββββ | 350/400 [01:02<00:09, 5.41it/s, v_num=1, train_loss_step=496, train_loss_epoch=509]Epoch 351/400: 88%|βββββββββ | 350/400 [01:02<00:09, 5.41it/s, v_num=1, train_loss_step=496, train_loss_epoch=509]Epoch 351/400: 88%|βββββββββ | 351/400 [01:02<00:09, 5.34it/s, v_num=1, train_loss_step=496, train_loss_epoch=509]Epoch 351/400: 88%|βββββββββ | 351/400 [01:02<00:09, 5.34it/s, v_num=1, train_loss_step=559, train_loss_epoch=510]Epoch 352/400: 88%|βββββββββ | 351/400 [01:02<00:09, 5.34it/s, v_num=1, train_loss_step=559, train_loss_epoch=510]Epoch 352/400: 88%|βββββββββ | 352/400 [01:02<00:08, 5.44it/s, v_num=1, train_loss_step=559, train_loss_epoch=510]Epoch 352/400: 88%|βββββββββ | 352/400 [01:02<00:08, 5.44it/s, v_num=1, train_loss_step=468, train_loss_epoch=509]Epoch 353/400: 88%|βββββββββ | 352/400 [01:02<00:08, 5.44it/s, v_num=1, train_loss_step=468, train_loss_epoch=509]Epoch 353/400: 88%|βββββββββ | 353/400 [01:02<00:08, 5.49it/s, v_num=1, train_loss_step=468, train_loss_epoch=509]Epoch 353/400: 88%|βββββββββ | 353/400 [01:02<00:08, 5.49it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 354/400: 88%|βββββββββ | 353/400 [01:02<00:08, 5.49it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 354/400: 88%|βββββββββ | 354/400 [01:02<00:08, 5.62it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 354/400: 88%|βββββββββ | 354/400 [01:02<00:08, 5.62it/s, v_num=1, train_loss_step=490, train_loss_epoch=510]Epoch 355/400: 88%|βββββββββ | 354/400 [01:02<00:08, 5.62it/s, v_num=1, train_loss_step=490, train_loss_epoch=510]Epoch 355/400: 89%|βββββββββ | 355/400 [01:02<00:07, 5.70it/s, v_num=1, train_loss_step=490, train_loss_epoch=510]Epoch 355/400: 89%|βββββββββ | 355/400 [01:02<00:07, 5.70it/s, v_num=1, train_loss_step=500, train_loss_epoch=510]Epoch 356/400: 89%|βββββββββ | 355/400 [01:02<00:07, 5.70it/s, v_num=1, train_loss_step=500, train_loss_epoch=510]Epoch 356/400: 89%|βββββββββ | 356/400 [01:03<00:07, 5.56it/s, v_num=1, train_loss_step=500, train_loss_epoch=510]Epoch 356/400: 89%|βββββββββ | 356/400 [01:03<00:07, 5.56it/s, v_num=1, train_loss_step=505, train_loss_epoch=510]Epoch 357/400: 89%|βββββββββ | 356/400 [01:03<00:07, 5.56it/s, v_num=1, train_loss_step=505, train_loss_epoch=510]Epoch 357/400: 89%|βββββββββ | 357/400 [01:03<00:07, 5.66it/s, v_num=1, train_loss_step=505, train_loss_epoch=510]Epoch 357/400: 89%|βββββββββ | 357/400 [01:03<00:07, 5.66it/s, v_num=1, train_loss_step=509, train_loss_epoch=508]Epoch 358/400: 89%|βββββββββ | 357/400 [01:03<00:07, 5.66it/s, v_num=1, train_loss_step=509, train_loss_epoch=508]Epoch 358/400: 90%|βββββββββ | 358/400 [01:03<00:07, 5.71it/s, v_num=1, train_loss_step=509, train_loss_epoch=508]Epoch 358/400: 90%|βββββββββ | 358/400 [01:03<00:07, 5.71it/s, v_num=1, train_loss_step=524, train_loss_epoch=509]Epoch 359/400: 90%|βββββββββ | 358/400 [01:03<00:07, 5.71it/s, v_num=1, train_loss_step=524, train_loss_epoch=509]Epoch 359/400: 90%|βββββββββ | 359/400 [01:03<00:07, 5.70it/s, v_num=1, train_loss_step=524, train_loss_epoch=509]Epoch 359/400: 90%|βββββββββ | 359/400 [01:03<00:07, 5.70it/s, v_num=1, train_loss_step=513, train_loss_epoch=509]Epoch 360/400: 90%|βββββββββ | 359/400 [01:03<00:07, 5.70it/s, v_num=1, train_loss_step=513, train_loss_epoch=509]Epoch 360/400: 90%|βββββββββ | 360/400 [01:03<00:06, 5.78it/s, v_num=1, train_loss_step=513, train_loss_epoch=509]Epoch 360/400: 90%|βββββββββ | 360/400 [01:03<00:06, 5.78it/s, v_num=1, train_loss_step=483, train_loss_epoch=509]Epoch 361/400: 90%|βββββββββ | 360/400 [01:03<00:06, 5.78it/s, v_num=1, train_loss_step=483, train_loss_epoch=509]Epoch 361/400: 90%|βββββββββ | 361/400 [01:03<00:06, 5.80it/s, v_num=1, train_loss_step=483, train_loss_epoch=509]Epoch 361/400: 90%|βββββββββ | 361/400 [01:03<00:06, 5.80it/s, v_num=1, train_loss_step=519, train_loss_epoch=508]Epoch 362/400: 90%|βββββββββ | 361/400 [01:03<00:06, 5.80it/s, v_num=1, train_loss_step=519, train_loss_epoch=508]Epoch 362/400: 90%|βββββββββ | 362/400 [01:04<00:06, 5.86it/s, v_num=1, train_loss_step=519, train_loss_epoch=508]Epoch 362/400: 90%|βββββββββ | 362/400 [01:04<00:06, 5.86it/s, v_num=1, train_loss_step=531, train_loss_epoch=509]Epoch 363/400: 90%|βββββββββ | 362/400 [01:04<00:06, 5.86it/s, v_num=1, train_loss_step=531, train_loss_epoch=509]Epoch 363/400: 91%|βββββββββ | 363/400 [01:04<00:06, 5.92it/s, v_num=1, train_loss_step=531, train_loss_epoch=509]Epoch 363/400: 91%|βββββββββ | 363/400 [01:04<00:06, 5.92it/s, v_num=1, train_loss_step=506, train_loss_epoch=509]Epoch 364/400: 91%|βββββββββ | 363/400 [01:04<00:06, 5.92it/s, v_num=1, train_loss_step=506, train_loss_epoch=509]Epoch 364/400: 91%|βββββββββ | 364/400 [01:04<00:06, 5.95it/s, v_num=1, train_loss_step=506, train_loss_epoch=509]Epoch 364/400: 91%|βββββββββ | 364/400 [01:04<00:06, 5.95it/s, v_num=1, train_loss_step=492, train_loss_epoch=508]Epoch 365/400: 91%|βββββββββ | 364/400 [01:04<00:06, 5.95it/s, v_num=1, train_loss_step=492, train_loss_epoch=508]Epoch 365/400: 91%|ββββββββββ| 365/400 [01:04<00:06, 5.65it/s, v_num=1, train_loss_step=492, train_loss_epoch=508]Epoch 365/400: 91%|ββββββββββ| 365/400 [01:04<00:06, 5.65it/s, v_num=1, train_loss_step=494, train_loss_epoch=508]Epoch 366/400: 91%|ββββββββββ| 365/400 [01:04<00:06, 5.65it/s, v_num=1, train_loss_step=494, train_loss_epoch=508]Epoch 366/400: 92%|ββββββββββ| 366/400 [01:04<00:06, 5.63it/s, v_num=1, train_loss_step=494, train_loss_epoch=508]Epoch 366/400: 92%|ββββββββββ| 366/400 [01:04<00:06, 5.63it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 367/400: 92%|ββββββββββ| 366/400 [01:04<00:06, 5.63it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 367/400: 92%|ββββββββββ| 367/400 [01:05<00:05, 5.58it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 367/400: 92%|ββββββββββ| 367/400 [01:05<00:05, 5.58it/s, v_num=1, train_loss_step=520, train_loss_epoch=509]Epoch 368/400: 92%|ββββββββββ| 367/400 [01:05<00:05, 5.58it/s, v_num=1, train_loss_step=520, train_loss_epoch=509]Epoch 368/400: 92%|ββββββββββ| 368/400 [01:05<00:05, 5.62it/s, v_num=1, train_loss_step=520, train_loss_epoch=509]Epoch 368/400: 92%|ββββββββββ| 368/400 [01:05<00:05, 5.62it/s, v_num=1, train_loss_step=509, train_loss_epoch=509]Epoch 369/400: 92%|ββββββββββ| 368/400 [01:05<00:05, 5.62it/s, v_num=1, train_loss_step=509, train_loss_epoch=509]Epoch 369/400: 92%|ββββββββββ| 369/400 [01:05<00:05, 5.49it/s, v_num=1, train_loss_step=509, train_loss_epoch=509]Epoch 369/400: 92%|ββββββββββ| 369/400 [01:05<00:05, 5.49it/s, v_num=1, train_loss_step=512, train_loss_epoch=509]Epoch 370/400: 92%|ββββββββββ| 369/400 [01:05<00:05, 5.49it/s, v_num=1, train_loss_step=512, train_loss_epoch=509]Epoch 370/400: 92%|ββββββββββ| 370/400 [01:05<00:05, 5.19it/s, v_num=1, train_loss_step=512, train_loss_epoch=509]Epoch 370/400: 92%|ββββββββββ| 370/400 [01:05<00:05, 5.19it/s, v_num=1, train_loss_step=508, train_loss_epoch=508]Epoch 371/400: 92%|ββββββββββ| 370/400 [01:05<00:05, 5.19it/s, v_num=1, train_loss_step=508, train_loss_epoch=508]Epoch 371/400: 93%|ββββββββββ| 371/400 [01:05<00:05, 5.08it/s, v_num=1, train_loss_step=508, train_loss_epoch=508]Epoch 371/400: 93%|ββββββββββ| 371/400 [01:05<00:05, 5.08it/s, v_num=1, train_loss_step=499, train_loss_epoch=508]Epoch 372/400: 93%|ββββββββββ| 371/400 [01:05<00:05, 5.08it/s, v_num=1, train_loss_step=499, train_loss_epoch=508]Epoch 372/400: 93%|ββββββββββ| 372/400 [01:06<00:05, 5.12it/s, v_num=1, train_loss_step=499, train_loss_epoch=508]Epoch 372/400: 93%|ββββββββββ| 372/400 [01:06<00:05, 5.12it/s, v_num=1, train_loss_step=541, train_loss_epoch=508]Epoch 373/400: 93%|ββββββββββ| 372/400 [01:06<00:05, 5.12it/s, v_num=1, train_loss_step=541, train_loss_epoch=508]Epoch 373/400: 93%|ββββββββββ| 373/400 [01:06<00:05, 5.19it/s, v_num=1, train_loss_step=541, train_loss_epoch=508]Epoch 373/400: 93%|ββββββββββ| 373/400 [01:06<00:05, 5.19it/s, v_num=1, train_loss_step=501, train_loss_epoch=508]Epoch 374/400: 93%|ββββββββββ| 373/400 [01:06<00:05, 5.19it/s, v_num=1, train_loss_step=501, train_loss_epoch=508]Epoch 374/400: 94%|ββββββββββ| 374/400 [01:06<00:04, 5.38it/s, v_num=1, train_loss_step=501, train_loss_epoch=508]Epoch 374/400: 94%|ββββββββββ| 374/400 [01:06<00:04, 5.38it/s, v_num=1, train_loss_step=497, train_loss_epoch=508]Epoch 375/400: 94%|ββββββββββ| 374/400 [01:06<00:04, 5.38it/s, v_num=1, train_loss_step=497, train_loss_epoch=508]Epoch 375/400: 94%|ββββββββββ| 375/400 [01:06<00:04, 5.56it/s, v_num=1, train_loss_step=497, train_loss_epoch=508]Epoch 375/400: 94%|ββββββββββ| 375/400 [01:06<00:04, 5.56it/s, v_num=1, train_loss_step=509, train_loss_epoch=508]Epoch 376/400: 94%|ββββββββββ| 375/400 [01:06<00:04, 5.56it/s, v_num=1, train_loss_step=509, train_loss_epoch=508]Epoch 376/400: 94%|ββββββββββ| 376/400 [01:06<00:04, 5.71it/s, v_num=1, train_loss_step=509, train_loss_epoch=508]Epoch 376/400: 94%|ββββββββββ| 376/400 [01:06<00:04, 5.71it/s, v_num=1, train_loss_step=512, train_loss_epoch=509]Epoch 377/400: 94%|ββββββββββ| 376/400 [01:06<00:04, 5.71it/s, v_num=1, train_loss_step=512, train_loss_epoch=509]Epoch 377/400: 94%|ββββββββββ| 377/400 [01:06<00:04, 5.52it/s, v_num=1, train_loss_step=512, train_loss_epoch=509]Epoch 377/400: 94%|ββββββββββ| 377/400 [01:06<00:04, 5.52it/s, v_num=1, train_loss_step=497, train_loss_epoch=508]Epoch 378/400: 94%|ββββββββββ| 377/400 [01:06<00:04, 5.52it/s, v_num=1, train_loss_step=497, train_loss_epoch=508]Epoch 378/400: 94%|ββββββββββ| 378/400 [01:07<00:04, 5.32it/s, v_num=1, train_loss_step=497, train_loss_epoch=508]Epoch 378/400: 94%|ββββββββββ| 378/400 [01:07<00:04, 5.32it/s, v_num=1, train_loss_step=515, train_loss_epoch=508]Epoch 379/400: 94%|ββββββββββ| 378/400 [01:07<00:04, 5.32it/s, v_num=1, train_loss_step=515, train_loss_epoch=508]Epoch 379/400: 95%|ββββββββββ| 379/400 [01:07<00:04, 5.18it/s, v_num=1, train_loss_step=515, train_loss_epoch=508]Epoch 379/400: 95%|ββββββββββ| 379/400 [01:07<00:04, 5.18it/s, v_num=1, train_loss_step=513, train_loss_epoch=508]Epoch 380/400: 95%|ββββββββββ| 379/400 [01:07<00:04, 5.18it/s, v_num=1, train_loss_step=513, train_loss_epoch=508]Epoch 380/400: 95%|ββββββββββ| 380/400 [01:07<00:03, 5.10it/s, v_num=1, train_loss_step=513, train_loss_epoch=508]Epoch 380/400: 95%|ββββββββββ| 380/400 [01:07<00:03, 5.10it/s, v_num=1, train_loss_step=495, train_loss_epoch=508]Epoch 381/400: 95%|ββββββββββ| 380/400 [01:07<00:03, 5.10it/s, v_num=1, train_loss_step=495, train_loss_epoch=508]Epoch 381/400: 95%|ββββββββββ| 381/400 [01:07<00:03, 5.15it/s, v_num=1, train_loss_step=495, train_loss_epoch=508]Epoch 381/400: 95%|ββββββββββ| 381/400 [01:07<00:03, 5.15it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 382/400: 95%|ββββββββββ| 381/400 [01:07<00:03, 5.15it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 382/400: 96%|ββββββββββ| 382/400 [01:07<00:03, 5.27it/s, v_num=1, train_loss_step=501, train_loss_epoch=509]Epoch 382/400: 96%|ββββββββββ| 382/400 [01:07<00:03, 5.27it/s, v_num=1, train_loss_step=533, train_loss_epoch=508]Epoch 383/400: 96%|ββββββββββ| 382/400 [01:07<00:03, 5.27it/s, v_num=1, train_loss_step=533, train_loss_epoch=508]Epoch 383/400: 96%|ββββββββββ| 383/400 [01:08<00:03, 5.47it/s, v_num=1, train_loss_step=533, train_loss_epoch=508]Epoch 383/400: 96%|ββββββββββ| 383/400 [01:08<00:03, 5.47it/s, v_num=1, train_loss_step=490, train_loss_epoch=508]Epoch 384/400: 96%|ββββββββββ| 383/400 [01:08<00:03, 5.47it/s, v_num=1, train_loss_step=490, train_loss_epoch=508]Epoch 384/400: 96%|ββββββββββ| 384/400 [01:08<00:02, 5.58it/s, v_num=1, train_loss_step=490, train_loss_epoch=508]Epoch 384/400: 96%|ββββββββββ| 384/400 [01:08<00:02, 5.58it/s, v_num=1, train_loss_step=530, train_loss_epoch=508]Epoch 385/400: 96%|ββββββββββ| 384/400 [01:08<00:02, 5.58it/s, v_num=1, train_loss_step=530, train_loss_epoch=508]Epoch 385/400: 96%|ββββββββββ| 385/400 [01:08<00:02, 5.49it/s, v_num=1, train_loss_step=530, train_loss_epoch=508]Epoch 385/400: 96%|ββββββββββ| 385/400 [01:08<00:02, 5.49it/s, v_num=1, train_loss_step=536, train_loss_epoch=508]Epoch 386/400: 96%|ββββββββββ| 385/400 [01:08<00:02, 5.49it/s, v_num=1, train_loss_step=536, train_loss_epoch=508]Epoch 386/400: 96%|ββββββββββ| 386/400 [01:08<00:02, 5.34it/s, v_num=1, train_loss_step=536, train_loss_epoch=508]Epoch 386/400: 96%|ββββββββββ| 386/400 [01:08<00:02, 5.34it/s, v_num=1, train_loss_step=531, train_loss_epoch=508]Epoch 387/400: 96%|ββββββββββ| 386/400 [01:08<00:02, 5.34it/s, v_num=1, train_loss_step=531, train_loss_epoch=508]Epoch 387/400: 97%|ββββββββββ| 387/400 [01:08<00:02, 5.25it/s, v_num=1, train_loss_step=531, train_loss_epoch=508]Epoch 387/400: 97%|ββββββββββ| 387/400 [01:08<00:02, 5.25it/s, v_num=1, train_loss_step=541, train_loss_epoch=508]Epoch 388/400: 97%|ββββββββββ| 387/400 [01:08<00:02, 5.25it/s, v_num=1, train_loss_step=541, train_loss_epoch=508]Epoch 388/400: 97%|ββββββββββ| 388/400 [01:09<00:02, 5.26it/s, v_num=1, train_loss_step=541, train_loss_epoch=508]Epoch 388/400: 97%|ββββββββββ| 388/400 [01:09<00:02, 5.26it/s, v_num=1, train_loss_step=531, train_loss_epoch=508]Epoch 389/400: 97%|ββββββββββ| 388/400 [01:09<00:02, 5.26it/s, v_num=1, train_loss_step=531, train_loss_epoch=508]Epoch 389/400: 97%|ββββββββββ| 389/400 [01:09<00:02, 5.12it/s, v_num=1, train_loss_step=531, train_loss_epoch=508]Epoch 389/400: 97%|ββββββββββ| 389/400 [01:09<00:02, 5.12it/s, v_num=1, train_loss_step=514, train_loss_epoch=508]Epoch 390/400: 97%|ββββββββββ| 389/400 [01:09<00:02, 5.12it/s, v_num=1, train_loss_step=514, train_loss_epoch=508]Epoch 390/400: 98%|ββββββββββ| 390/400 [01:09<00:01, 5.24it/s, v_num=1, train_loss_step=514, train_loss_epoch=508]Epoch 390/400: 98%|ββββββββββ| 390/400 [01:09<00:01, 5.24it/s, v_num=1, train_loss_step=499, train_loss_epoch=508]Epoch 391/400: 98%|ββββββββββ| 390/400 [01:09<00:01, 5.24it/s, v_num=1, train_loss_step=499, train_loss_epoch=508]Epoch 391/400: 98%|ββββββββββ| 391/400 [01:09<00:01, 5.42it/s, v_num=1, train_loss_step=499, train_loss_epoch=508]Epoch 391/400: 98%|ββββββββββ| 391/400 [01:09<00:01, 5.42it/s, v_num=1, train_loss_step=498, train_loss_epoch=508]Epoch 392/400: 98%|ββββββββββ| 391/400 [01:09<00:01, 5.42it/s, v_num=1, train_loss_step=498, train_loss_epoch=508]Epoch 392/400: 98%|ββββββββββ| 392/400 [01:09<00:01, 5.54it/s, v_num=1, train_loss_step=498, train_loss_epoch=508]Epoch 392/400: 98%|ββββββββββ| 392/400 [01:09<00:01, 5.54it/s, v_num=1, train_loss_step=510, train_loss_epoch=508]Epoch 393/400: 98%|ββββββββββ| 392/400 [01:09<00:01, 5.54it/s, v_num=1, train_loss_step=510, train_loss_epoch=508]Epoch 393/400: 98%|ββββββββββ| 393/400 [01:09<00:01, 5.44it/s, v_num=1, train_loss_step=510, train_loss_epoch=508]Epoch 393/400: 98%|ββββββββββ| 393/400 [01:09<00:01, 5.44it/s, v_num=1, train_loss_step=505, train_loss_epoch=508]Epoch 394/400: 98%|ββββββββββ| 393/400 [01:09<00:01, 5.44it/s, v_num=1, train_loss_step=505, train_loss_epoch=508]Epoch 394/400: 98%|ββββββββββ| 394/400 [01:10<00:01, 5.31it/s, v_num=1, train_loss_step=505, train_loss_epoch=508]Epoch 394/400: 98%|ββββββββββ| 394/400 [01:10<00:01, 5.31it/s, v_num=1, train_loss_step=485, train_loss_epoch=508]Epoch 395/400: 98%|ββββββββββ| 394/400 [01:10<00:01, 5.31it/s, v_num=1, train_loss_step=485, train_loss_epoch=508]Epoch 395/400: 99%|ββββββββββ| 395/400 [01:10<00:00, 5.18it/s, v_num=1, train_loss_step=485, train_loss_epoch=508]Epoch 395/400: 99%|ββββββββββ| 395/400 [01:10<00:00, 5.18it/s, v_num=1, train_loss_step=517, train_loss_epoch=508]Epoch 396/400: 99%|ββββββββββ| 395/400 [01:10<00:00, 5.18it/s, v_num=1, train_loss_step=517, train_loss_epoch=508]Epoch 396/400: 99%|ββββββββββ| 396/400 [01:10<00:00, 5.18it/s, v_num=1, train_loss_step=517, train_loss_epoch=508]Epoch 396/400: 99%|ββββββββββ| 396/400 [01:10<00:00, 5.18it/s, v_num=1, train_loss_step=482, train_loss_epoch=508]Epoch 397/400: 99%|ββββββββββ| 396/400 [01:10<00:00, 5.18it/s, v_num=1, train_loss_step=482, train_loss_epoch=508]Epoch 397/400: 99%|ββββββββββ| 397/400 [01:10<00:00, 5.27it/s, v_num=1, train_loss_step=482, train_loss_epoch=508]Epoch 397/400: 99%|ββββββββββ| 397/400 [01:10<00:00, 5.27it/s, v_num=1, train_loss_step=522, train_loss_epoch=507]Epoch 398/400: 99%|ββββββββββ| 397/400 [01:10<00:00, 5.27it/s, v_num=1, train_loss_step=522, train_loss_epoch=507]Epoch 398/400: 100%|ββββββββββ| 398/400 [01:10<00:00, 5.50it/s, v_num=1, train_loss_step=522, train_loss_epoch=507]Epoch 398/400: 100%|ββββββββββ| 398/400 [01:10<00:00, 5.50it/s, v_num=1, train_loss_step=527, train_loss_epoch=508]Epoch 399/400: 100%|ββββββββββ| 398/400 [01:10<00:00, 5.50it/s, v_num=1, train_loss_step=527, train_loss_epoch=508]Epoch 399/400: 100%|ββββββββββ| 399/400 [01:11<00:00, 5.58it/s, v_num=1, train_loss_step=527, train_loss_epoch=508]Epoch 399/400: 100%|ββββββββββ| 399/400 [01:11<00:00, 5.58it/s, v_num=1, train_loss_step=536, train_loss_epoch=507]Epoch 400/400: 100%|ββββββββββ| 399/400 [01:11<00:00, 5.58it/s, v_num=1, train_loss_step=536, train_loss_epoch=507]Epoch 400/400: 100%|ββββββββββ| 400/400 [01:11<00:00, 5.68it/s, v_num=1, train_loss_step=536, train_loss_epoch=507]Epoch 400/400: 100%|ββββββββββ| 400/400 [01:11<00:00, 5.68it/s, v_num=1, train_loss_step=512, train_loss_epoch=508]Epoch 400/400: 100%|ββββββββββ| 400/400 [01:11<00:00, 5.62it/s, v_num=1, train_loss_step=512, train_loss_epoch=508]
After the integration finished, both corrected expression matrices can be found saved in the Seurat object and can be used for cluster calculations and UMAP projections. In this case, we will continue with Seuratv5 CCA Integration method.
Seu_obj <- FindNeighbors(object = Seu_obj, reduction = "integrated.cca", dims = 1:50) #change dims accrodingly
#> Computing nearest neighbor graph
#> Computing SNN
Seu_obj <- FindClusters(Seu_obj, resolution = 0.3, algorithm=4, random.seed = 1234)
Seu_obj <- RunUMAP(object = Seu_obj, reduction = "integrated.cca", dims = 1:50)
#> 17:48:51 UMAP embedding parameters a = 0.9922 b = 1.112
#> 17:48:51 Read 2807 rows and found 50 numeric columns
#> 17:48:51 Using Annoy for neighbor search, n_neighbors = 30
#> 17:48:51 Building Annoy index with metric = cosine, n_trees = 50
#> 0% 10 20 30 40 50 60 70 80 90 100%
#> [----|----|----|----|----|----|----|----|----|----|
#> **************************************************|
#> 17:48:52 Writing NN index file to temp file /tmp/Rtmp9zSWgB/file169324120f0f72
#> 17:48:52 Searching Annoy index using 1 thread, search_k = 3000
#> 17:48:52 Annoy recall = 100%
#> 17:48:53 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
#> 17:48:54 Initializing from normalized Laplacian + noise (using RSpectra)
#> 17:48:54 Commencing optimization for 500 epochs, with 129308 positive edges
#> 17:48:54 Using rng type: pcg
#> 17:48:57 Optimization finished
DO.UMAP(Seu_obj, group.by = "seurat_clusters")
DO.UMAP(Seu_obj, group.by = "condition", legend.position = "right", label = F)
Semi-automatic annotation with Celltypist
Next up, we implemented a wrapper around the semi-automatic
annotation tool celltypist. It
will annotate the defined clusters based on the
Adult_COVID19_PBMC.pkl
model.
Seu_obj <- DO.CellTypist(Seu_obj,
modelName = "Healthy_COVID19_PBMC.pkl",
runCelltypistUpdate=T,
over_clustering = "seurat_clusters")
#> 2025-06-26 17:48:58 - Running celltypist using model: Healthy_COVID19_PBMC.pkl
#> 2025-06-26 17:48:58 - Saving celltypist results to temporary folder: /tmp/Rtmp9zSWgB/file1693246c47789d
#> 2025-06-26 17:49:20 - Running Celltypist
#> 2025-06-26 17:49:24 - Creating probality plot
DO.UMAP(Seu_obj, group.by = "autoAnnot", legend.position = "right")
The semi-automatic annotation is a good estimate of the cell types in
your object. But you should always manually validate the findings of the
model. You can manually define a set of marker genes for the cell
population or check the most preeminent genes per cluster by using
Seuratβs FindAllMarkers
function.
#pick top 5 per cluster
annotation_Markers <- FindAllMarkers(object = Seu_obj,
assay = "RNA",
group.by = "autoAnnot",
min.pct = 0.25,
logfc.threshold = 0.25)
#> Calculating cluster CD14_mono
#> Calculating cluster CD4.Naive
#> Calculating cluster CD8.Naive
#> Calculating cluster NK_16hi
#> Calculating cluster CD8.EM
#> Calculating cluster B_naive
#> Calculating cluster pDC
annotation_Markers <- annotation_Markers %>%
arrange(desc(avg_log2FC)) %>%
distinct(gene, .keep_all = TRUE) %>%
group_by(cluster) %>%
slice_head(n = 5)
p1 <- DO.Dotplot(Seu_object = Seu_obj,
Feature = annotation_Markers,
group.by.x = "seurat_clusters",
plot.margin = c(1,1,1,1),
annotation_x = T,
point_stroke = 0.1,
annotation_x_rev = T,
textSize = 14,
hjust = 0.5,
vjust = 0,
textRot = 0,
segWidth = 0.3,
lwd = 3)
#> Scale for size is already present.
#> Adding another scale for size, which will replace the existing scale.
#manual set of markers
annotation_Markers <- data.frame(cluster = c("ImmuneCells",
rep("B_cells", 3),
rep("T_cells",3),
rep("NK", 2),
rep("Myeloid",3),
rep("pDC",3)),
genes = c("PTPRC", "CD79A", "BANK1", "MS4A1", "CD3E", "CD4", "IL7R", "NKG7",
"KLRD1","CD68", "CD14","ITGAM", "LILRA4", "CLEC4C", "LRRC26"))
p2 <- DO.Dotplot(Seu_object = Seu_obj,
Feature = annotation_Markers,
group.by.x = "seurat_clusters",
plot.margin = c(1,1,1,1),
annotation_x = T,
point_stroke = 0.1,
annotation_x_rev = T,
textSize = 14,
hjust = 0.5,
vjust = 0,
textRot = 0,
segWidth = 0.3,
lwd = 3)
#> Scale for size is already present.
#> Adding another scale for size, which will replace the existing scale.
The manual markers for the immune cells show an agreement for the annotation therefore we can continue with it after some minor adjustments
Seu_obj$annotation <- plyr::revalue(Seu_obj$seurat_clusters, c(`1` = "T_cells",
`2` = "T_cells",
`3` = "NK",
`4` = "B_cells",
`5` = "Monocytes",
`6` = "NK",
`7` = "T_cells",
`8` = "pDC"))
DO.UMAP(Seu_obj, group.by = "annotation", legend.position = "right")
Cell composition
After the identification of the celltype populations, we can also evaluate if there are significant changes in these populations in the healthy and diseased condition using a wrapper function around the python tool scanpro.
DO.CellComposition(Seu_obj,
assay_normalized = "RNA",
cluster_column = "annotation",
sample_column = "orig.ident",
condition_column = "condition",
transform_method = "arcsin",
n_reps = 3)
#> βΉ Using the 'counts' assay as the X matrix
#> [INFO] Your data doesn't have replicates! Artificial replicates will be simulated to run scanpro.
#> [INFO] Simulation may take some minutes...
#> [INFO] Generating 3 replicates and running 100 simulations...
#> [INFO] Finished 100 simulations in 2.17 seconds
#> Using orig.ident, condition as id variables
#> Using condition as id variables
Reclustering of cell populations
Subpopulations can be tricky to find, therefore it is always a good practice to perform a reclustering of a given cell populations, if we are interested in a specific set of cells in a population. Here for example in the T cells. We will identify the subpopulations and then markers defining them.
Seu_obj <- DO.FullRecluster(Seu_obj, over_clustering = "annotation")
DO.UMAP(Seu_obj, group.by = "annotation_recluster")
T_cells <- DO.Subset(Seu_obj,
ident = "annotation_recluster",
ident_name = grep("T_cells", unique(Seu_obj$annotation_recluster), value = T))
#> Specified 'ident_name': expecting a categorical variable.
T_markers <- FindAllMarkers(T_cells, group.by = "annotation_recluster")
#> Calculating cluster T_cells_1
#> Calculating cluster T_cells_2
#> Calculating cluster T_cells_4
#> Calculating cluster T_cells_3
T_cells <- DO.CellTypist(T_cells,
modelName = "Healthy_COVID19_PBMC.pkl",
runCelltypistUpdate=F,
over_clustering = "annotation_recluster",
SeuV5 = F)
#> 2025-06-26 17:49:36 - Running celltypist using model: Healthy_COVID19_PBMC.pkl
#> 2025-06-26 17:49:36 - Saving celltypist results to temporary folder: /tmp/Rtmp9zSWgB/file169324c2391b0
#> 2025-06-26 17:49:45 - Running Celltypist
#> 2025-06-26 17:49:48 - Creating probality plot
T_cells$annotation <- plyr::revalue(T_cells$annotation_recluster, c(`T_cells_1` = "CD4_T_cells",
`T_cells_2` = "CD4_T_cells",
`T_cells_3` = "CD4_T_cells",
`T_cells_4` = "CD8_T_cells"))
Now that we identified the marker genes describing the different T cell populations. We can re-annotate them based on their expression profile and a new prediciton from Celltypist. After this we, can easily transfer the labels in the subset to the original object.
Seu_obj <- DO.TransferLabel(Seu_obj,
Subset_obj = T_cells,
annotation_column = "annotation",
subset_annotation = "annotation")
DO.UMAP(Seu_obj, group.by = "annotation", legend.position = "right")
Gene ontology analysis
To explore which biological processes are enriched in a specific cell type across conditions, we can perform gene ontology analysis. Weβll start by identifying differentially expressed genes, focusing here on T cells. For differential gene expression analysis, we introduced a new function, which combines DGE analysis using a single cell approach, e.g.Β the popular Wilcoxon test and a pseudobulk testing using DESeq2. We can then observe the results in a combined dataframe.
#since this data set contains only one sampel per condition we introduce replicates for showing the pseudo bulk approach
set.seed(123)
Seu_obj$orig.ident2 <- sample(rep(c("A", "B", "C", "D", "E", "F"), length.out = ncol(Seu_obj)))
CD4T_cells <- DO.Subset(Seu_obj, ident = "annotation", ident_name = "CD4_T_cells")
#> Specified 'ident_name': expecting a categorical variable.
DGE_result <- DO.MultiDGE(CD4T_cells,
sample_col = "orig.ident2",
method_sc = "wilcox",
ident_ctrl = "healthy")
#> Names of identity class contain underscores ('_'), replacing with dashes ('-')
#> Centering and scaling data matrix
#>
#> This message is displayed once every 8 hours.
#> 2025-06-26 17:49:50 - Corrected annotation names in pseudo-bulk object by replacing '-' with '_'.
#> 2025-06-26 17:49:50 - Starting DGE single cell method analysis
#> 2025-06-26 17:49:50 - Comparing disease with healthy in: CD4_T_cells
#> 2025-06-26 17:49:50 - Finished DGE single cell method analysis
#> 2025-06-26 17:49:50 - Starting DGE pseudo bulk method analysis
#> 2025-06-26 17:49:50 - Comparing disease with healthy in: CD4_T_cells
#> converting counts to integer mode
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> 2025-06-26 17:49:56 - Finished DGE pseudo bulk method analysis
head(DGE_result,10) %>%
kable(format = "html", table.attr = "style='width:100%;'") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
gene | pct.1 | pct.2 | celltype | condition | avg_log2FC_PB_DESeq2 | avg_log2FC_SC_wilcox | p_val_adj_PB_DESeq2 | p_val_adj_SC_wilcox | p_val_PB_DESeq2 | p_val_SC_wilcox |
---|---|---|---|---|---|---|---|---|---|---|
RPS4Y1 | 0.777 | 0.000 | CD4_T_cells | disease | 5.2597526 | 12.9698957 | 0 | 0 | 0 | 0 |
RGS1 | 0.852 | 0.056 | CD4_T_cells | disease | 5.3593795 | 6.3186953 | 0 | 0 | 0 | 0 |
CREM | 0.876 | 0.085 | CD4_T_cells | disease | 4.8429628 | 5.5589791 | 0 | 0 | 0 | 0 |
RPS26 | 0.794 | 1.000 | CD4_T_cells | disease | -3.5365624 | -3.5679504 | 0 | 0 | 0 | 0 |
SRGN | 0.989 | 0.502 | CD4_T_cells | disease | 4.0234642 | 4.2075868 | 0 | 0 | 0 | 0 |
TUBB4B | 0.883 | 0.171 | CD4_T_cells | disease | 3.5192993 | 3.9108426 | 0 | 0 | 0 | 0 |
JUND | 0.993 | 0.959 | CD4_T_cells | disease | 2.0672721 | 2.1379443 | 0 | 0 | 0 | 0 |
HSPH1 | 0.757 | 0.091 | CD4_T_cells | disease | 4.0478214 | 4.7355979 | 0 | 0 | 0 | 0 |
CXCR4 | 0.983 | 0.625 | CD4_T_cells | disease | 2.7089540 | 2.7576397 | 0 | 0 | 0 | 0 |
EEF1A1 | 1.000 | 1.000 | CD4_T_cells | disease | -0.7565409 | -0.7638441 | 0 | 0 | 0 | 0 |
After inspecting the DGE analysis, we continue with
DO.enrichR
function, which uses the enrichR API to run gene
set enrichment. It separates the DE genes into up- and down-regulated
sets and runs the analysis for each group independently
result_GO <- DO.enrichR(df_DGE = DGE_result,
gene_column = "gene",
pval_column = "p_val_adj_SC_wilcox",
log2fc_column = "avg_log2FC_SC_wilcox",
pval_cutoff = 0.05,
log2fc_cutoff = 0.25,
path = NULL,
filename = "",
species = "Human",
go_catgs = "GO_Biological_Process_2023")
#> Connection changed to https://maayanlab.cloud/Enrichr/
#> Connection is Live!
#> Uploading data to Enrichr... Done.
#> Querying GO_Biological_Process_2023... Done.
#> Parsing results... Done.
#> Uploading data to Enrichr... Done.
#> Querying GO_Biological_Process_2023... Done.
#> Parsing results... Done.
head(result_GO,5) %>%
kable(format = "html", table.attr = "style='width:100%;'") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
Term | Overlap | P.value | Adjusted.P.value | Old.P.value | Old.Adjusted.P.value | Odds.Ratio | Combined.Score | Genes | Database | State |
---|---|---|---|---|---|---|---|---|---|---|
Regulation Of DNA-templated Transcription (GO:0006355) | 154/1922 | 0 | 0e+00 | 0 | 0 | 2.069975 | 61.56549 | ZNF331;NAB1;GMNN;ZBTB21;JMJD1C;RORA;PRDM2;ARID4B;PRDM1;AHR;IKZF2;NR3C1;IKZF3;ETS1;BACH1;BASP1;GPBP1;TNFRSF4;JUNB;ZNF165;ZBTB38;F2R;ARID5A;DYRK1B;ARID5B;POU3F1;RUNX3;HIC1;SAP30;JMJD6;MAF;DDIT3;SUB1;MORF4L2;ERF;TOX;ATF3;ATF4;KMT2E;SP140;TSHZ2;CREM;ZFP36L2;ATXN1;MED31;ZNF703;MIER1;HIVEP2;HEXIM1;EGR1;HSPA8;JUN;EGR2;EGR3;JUND;EGR4;CBX4;FUS;DENND4A;PYHIN1;ZBTB10;IRF2BP2;PBX4;FOXN2;SMARCA2;NFKB1;NFKB2;FOSL2;SMAD7;NR4A2;NR4A1;NR4A3;BCL6;ID2;MAFG;ID1;MAFF;JMY;REL;SNAI1;HBP1;CALR;OGT;CDK14;HLA-DRB1;RCOR1;NFE2L2;MXD4;CDK16;CDKN1C;CSRNP1;CSRNP2;BTG1;PHF20;CITED2;HMGB2;CHD2;CHD1;TRPS1;ZNF644;KLF10;NCOA2;BRD2;USP47;RHOH;FOS;BAZ1A;ZFY;SIRT1;MLF1;KLF16;ETV7;TOX2;ELF1;SFPQ;ZEB2;ZEB1;IFNG;IRF4;MED21;IRF1;CEBPA;CEBPB;CEBPG;SPTY2D1;RELB;SERTAD3;IFI16;NFIL3;POLR2A;TP53INP2;TP53INP1;STAT4;RBBP8;PLAGL2;SAP18;POLR2K;POLR2L;HES4;ATF7IP;CD74;STAT3;SOD2;HNRNPAB;KLF3;KLF2;BATF;PER1;KLF6;RYBP;KLF5;PITHD1;PDCD4;FOSB | GO_Biological_Process_2023 | enriched |
Positive Regulation Of Cytokine Production (GO:0001819) | 44/320 | 0 | 0e+00 | 0 | 0 | 3.575569 | 87.69936 | PTGER4;ITK;RAB1A;CEBPB;CEBPG;RORA;PTPN22;TANK;MALT1;HSPD1;PNP;IFI16;PDE4B;CCR7;TIGIT;HLA-DPA1;IL12RB2;EGR1;CD74;ANXA1;CADM1;RIPK2;PDE4D;STAT3;F2R;ISG15;HLA-A;BATF;SOD1;CD2;SLC7A5;PTPRC;RGCC;IFNG;IRF4;TRAF3;DDIT3;IRF1;CD28;IL6ST;CD200;HSPA1B;ATF4;HSPA1A | GO_Biological_Process_2023 | enriched |
Regulation Of Gene Expression (GO:0010468) | 98/1127 | 0 | 1e-07 | 0 | 0 | 2.191567 | 50.89466 | ZNF331;TFRC;NAB1;JMJD1C;RORA;PRDM2;AHR;NR3C1;ETS1;BACH1;GPBP1;ZC3H12A;NANOS1;FBXW7;ZBTB38;POU3F1;ATP1B1;RUNX3;HIC1;SAP30;DDIT3;MYADM;EZR;ATF4;CREM;ZBTB1;HNRNPLL;ZFP36L1;PCBP3;ZNF703;MIER1;RBM12;SLC38A2;EGR1;NDFIP2;TIPARP;FUS;DENND4A;RAB27A;BRAF;FOXN2;SMARCA2;NFKB1;NFKB2;CLK1;RGCC;PTPRC;BCL6;ID2;CD28;REL;SNAI1;CALR;OGT;NFE2L2;USP36;SETD2;BTG1;PHF20;CITED2;PTPN22;NFKBIZ;UTY;KDM6B;NCOA2;IFNGR1;RHOH;BAZ1A;SIRT1;MLF1;RNF168;SLC7A5;SFPQ;NPC1;IFNG;TRAF3;CEBPA;CEBPB;AHNAK;SPTY2D1;TOB2;CRIP1;TOB1;SERTAD3;IFI16;NFIL3;POLR2A;TDG;ATF7IP;CD74;STAT3;HNRNPAB;PER1;PDCL3;RYBP;DNAJA4;HSPA1B;HSPA1A | GO_Biological_Process_2023 | enriched |
Regulation Of Transcription By RNA Polymerase II (GO:0006357) | 150/2028 | 0 | 1e-07 | 0 | 0 | 1.875800 | 42.82043 | ZBTB21;JMJD1C;RORA;PRDM2;ARID4B;PRDM1;AHR;IKZF2;NR3C1;GABPB1;IKZF3;ETS1;BACH1;ZFP36;ZC3H12A;NAMPT;JUNB;IER5;ZNF165;ZBTB38;NSMCE3;ARID5A;ARID5B;POU3F1;RUNX3;HIC1;SAP30;JMJD6;MAF;DDIT3;SUB1;ERF;TOX;EZR;SQSTM1;ATF3;ATF4;SP140;TSHZ2;CREM;ZBTB1;PIK3R1;SDCBP;ATXN1;MED31;MIER1;HIVEP2;HEXIM1;EGR1;PLK3;JUN;EGR2;EGR3;JUND;EGR4;CBX4;FUS;GADD45A;ZBTB10;IRF2BP2;PBX4;SMARCA2;NFKB1;NFKB2;FOSL2;SMAD7;NR4A2;NFKBIA;AHI1;NR4A1;RGCC;NR4A3;BCL6;ID2;MAFG;AGO2;ID1;MAFF;JMY;REL;SNAI1;HBP1;CALR;OGT;RCOR1;NFE2L2;MXD4;ARF4;CSRNP1;CSRNP2;PHF20;CITED2;HMGB2;CHD2;CHD1;TRPS1;ZNF644;TGIF1;KDM6B;KLF10;NCOA2;BRD2;RIPK2;TET2;FOS;BAZ1A;ZFY;SIRT1;YWHAZ;KLF16;ETV7;TOX2;ELF1;SFPQ;ZEB2;ZEB1;IFNG;IRF4;MED21;IRF1;PTMA;CEBPA;MAGEH1;CEBPB;TMF1;CEBPG;DDX21;RELB;DNAJB1;IFI16;NFIL3;DNAJB4;STAT4;RBBP8;PLAGL2;SAP18;MEF2D;HES4;STAT3;SOD2;KLF3;KLF2;BATF;PER1;KLF6;KLF5;FOSB;LPIN1;LPIN2;HSPA1A | GO_Biological_Process_2023 | enriched |
Response To Unfolded Protein (GO:0006986) | 15/44 | 0 | 2e-07 | 0 | 0 | 11.360859 | 249.29904 | HSPA8;PTPN1;HSP90AA1;HSP90AB1;HSPA4;HSPA2;HSPE1;HERPUD1;HSPD1;DNAJA1;DNAJB1;HSPH1;DNAJB4;DDIT3;HSPA1A | GO_Biological_Process_2023 | enriched |
The top significant results can then be visualized in a bar plot.
result_GO_sig <- result_GO[result_GO$Adjusted.P.value < 0.05, ]
result_GO_sig$celltype <- "CD4T_cells"
DO.SplitBarGSEA(df_GSEA = result_GO_sig,
term_col = "Term",
col_split = "Combined.Score",
cond_col = "State",
pos_cond = "enriched",
showP = F,
path = paste0(base, "/"))
#> !!! Assuming GO Terms are preprocessed (Only Significant terms included)
GSEA_plot <- list.files(path = base, pattern = "SplitBar.*\\.svg$", full.names = TRUE, recursive = TRUE)
plot(magick::image_read_svg(GSEA_plot))
saveRDS(Seu_obj, "~/Downloads/Data10x/Seu_obj_blood10x.rds")
Session information
#> β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> setting value
#> version R version 4.5.1 (2025-06-13)
#> os Ubuntu 24.04.2 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language en
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Berlin
#> date 2025-06-26
#> pandoc 3.4 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/tools/x86_64/ (via rmarkdown)
#> quarto 1.6.42 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/quarto
#>
#> β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> package * version date (UTC) lib source
#> abind 1.4-8 2024-09-12 [2] CRAN (R 4.5.0)
#> backports 1.5.0 2024-05-23 [2] CRAN (R 4.5.0)
#> basilisk 1.20.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> basilisk.utils 1.20.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> beachmat 2.24.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> beeswarm 0.4.0 2021-06-01 [2] CRAN (R 4.5.0)
#> Biobase 2.68.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> BiocGenerics 0.54.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> BiocIO 1.18.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> BiocManager 1.30.26 2025-06-05 [2] CRAN (R 4.5.0)
#> BiocNeighbors 2.2.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> BiocParallel 1.42.1 2025-06-01 [2] Bioconductor 3.21 (R 4.5.0)
#> BiocSingular 1.24.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> BiocStyle * 2.36.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> Biostrings 2.76.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> bit 4.6.0 2025-03-06 [2] CRAN (R 4.5.0)
#> bit64 4.6.0-1 2025-01-16 [2] CRAN (R 4.5.0)
#> bitops 1.0-9 2024-10-03 [2] CRAN (R 4.5.0)
#> bluster 1.18.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> bookdown 0.43 2025-04-15 [2] CRAN (R 4.5.0)
#> broom 1.0.8 2025-03-28 [2] CRAN (R 4.5.0)
#> bslib 0.9.0 2025-01-30 [2] CRAN (R 4.5.0)
#> cachem 1.1.0 2024-05-16 [2] CRAN (R 4.5.0)
#> car 3.1-3 2024-09-27 [2] CRAN (R 4.5.0)
#> carData 3.0-5 2022-01-06 [2] CRAN (R 4.5.0)
#> cli 3.6.5 2025-04-23 [2] CRAN (R 4.5.0)
#> cluster 2.1.8.1 2025-03-12 [5] CRAN (R 4.4.3)
#> codetools 0.2-20 2024-03-31 [5] CRAN (R 4.4.0)
#> cowplot 1.1.3 2024-01-22 [2] CRAN (R 4.5.0)
#> crayon 1.5.3 2024-06-20 [2] CRAN (R 4.5.0)
#> curl 6.3.0 2025-06-06 [2] CRAN (R 4.5.0)
#> data.table 1.17.4 2025-05-26 [2] CRAN (R 4.5.0)
#> DelayedArray 0.34.1 2025-04-17 [2] Bioconductor 3.21 (R 4.5.0)
#> DelayedMatrixStats 1.30.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> deldir 2.0-4 2024-02-28 [2] CRAN (R 4.5.0)
#> desc 1.4.3 2023-12-10 [2] CRAN (R 4.5.0)
#> DESeq2 1.48.1 2025-05-11 [2] Bioconductor 3.21 (R 4.5.0)
#> digest 0.6.37 2024-08-19 [2] CRAN (R 4.5.0)
#> dir.expiry 1.16.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> dotCall64 1.2 2024-10-04 [2] CRAN (R 4.5.0)
#> DOtools * 0.4.0 2025-06-26 [1] Bioconductor
#> dplyr * 1.1.4 2023-11-17 [2] CRAN (R 4.5.0)
#> dqrng 0.4.1 2024-05-28 [2] CRAN (R 4.5.0)
#> DropletUtils 1.28.0 2025-04-17 [2] Bioconductor 3.21 (R 4.5.0)
#> edgeR 4.6.2 2025-05-07 [2] Bioconductor 3.21 (R 4.5.0)
#> enrichR * 3.4 2025-02-02 [2] CRAN (R 4.5.0)
#> evaluate 1.0.3 2025-01-10 [2] CRAN (R 4.5.0)
#> farver 2.1.2 2024-05-13 [2] CRAN (R 4.5.0)
#> fastDummies 1.7.5 2025-01-20 [2] CRAN (R 4.5.0)
#> fastmap 1.2.0 2024-05-15 [2] CRAN (R 4.5.0)
#> filelock 1.0.3 2023-12-11 [2] CRAN (R 4.5.0)
#> fitdistrplus 1.2-2 2025-01-07 [2] CRAN (R 4.5.0)
#> Formula 1.2-5 2023-02-24 [2] CRAN (R 4.5.0)
#> fs 1.6.6 2025-04-12 [2] CRAN (R 4.5.0)
#> future * 1.58.0 2025-06-05 [2] CRAN (R 4.5.0)
#> future.apply 1.20.0 2025-06-06 [2] CRAN (R 4.5.0)
#> generics 0.1.4 2025-05-09 [2] CRAN (R 4.5.0)
#> GenomeInfoDb 1.44.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> GenomeInfoDbData 1.2.14 2025-05-13 [2] Bioconductor
#> GenomicAlignments 1.44.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> GenomicRanges 1.60.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> ggalluvial 0.12.5 2023-02-22 [2] CRAN (R 4.5.0)
#> ggbeeswarm 0.7.2 2023-04-29 [2] CRAN (R 4.5.0)
#> ggcorrplot 0.1.4.1 2023-09-05 [2] CRAN (R 4.5.1)
#> ggiraph 0.8.13 2025-03-28 [2] CRAN (R 4.5.0)
#> ggiraphExtra 0.3.0 2020-10-06 [2] CRAN (R 4.5.0)
#> ggplot2 3.5.2 2025-04-09 [2] CRAN (R 4.5.0)
#> ggpubr 0.6.0 2023-02-10 [2] CRAN (R 4.5.0)
#> ggrastr 1.0.2 2023-06-01 [2] CRAN (R 4.5.0)
#> ggrepel 0.9.6 2024-09-07 [2] CRAN (R 4.5.0)
#> ggridges 0.5.6 2024-01-23 [2] CRAN (R 4.5.0)
#> ggsignif 0.6.4 2022-10-13 [2] CRAN (R 4.5.0)
#> ggtext 0.1.2 2022-09-16 [2] CRAN (R 4.5.0)
#> globals 0.18.0 2025-05-08 [2] CRAN (R 4.5.0)
#> glue 1.8.0 2024-09-30 [2] CRAN (R 4.5.0)
#> goftest 1.2-3 2021-10-07 [2] CRAN (R 4.5.0)
#> gridExtra 2.3 2017-09-09 [2] CRAN (R 4.5.0)
#> gridtext 0.1.5 2022-09-16 [2] CRAN (R 4.5.0)
#> gtable 0.3.6 2024-10-25 [2] CRAN (R 4.5.0)
#> h5mread 1.0.1 2025-05-21 [2] Bioconductor 3.21 (R 4.5.0)
#> HDF5Array 1.36.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> hdf5r 1.3.12 2025-01-20 [2] CRAN (R 4.5.0)
#> hms 1.1.3 2023-03-21 [2] CRAN (R 4.5.0)
#> htmltools 0.5.8.1 2024-04-04 [2] CRAN (R 4.5.0)
#> htmlwidgets 1.6.4 2023-12-06 [2] CRAN (R 4.5.0)
#> httpuv 1.6.16 2025-04-16 [2] CRAN (R 4.5.0)
#> httr 1.4.7 2023-08-15 [2] CRAN (R 4.5.0)
#> ica 1.0-3 2022-07-08 [2] CRAN (R 4.5.0)
#> igraph 2.1.4 2025-01-23 [2] CRAN (R 4.5.0)
#> insight 1.3.0 2025-05-20 [2] CRAN (R 4.5.0)
#> IRanges 2.42.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> irlba 2.3.5.1 2022-10-03 [2] CRAN (R 4.5.0)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.5.0)
#> jsonlite 2.0.0 2025-03-27 [2] CRAN (R 4.5.0)
#> kableExtra * 1.4.0 2024-01-24 [2] CRAN (R 4.5.1)
#> KernSmooth 2.23-26 2025-01-01 [5] CRAN (R 4.4.2)
#> knitr 1.50 2025-03-16 [2] CRAN (R 4.5.0)
#> labeling 0.4.3 2023-08-29 [2] CRAN (R 4.5.0)
#> later 1.4.2 2025-04-08 [2] CRAN (R 4.5.0)
#> lattice 0.22-5 2023-10-24 [5] CRAN (R 4.3.3)
#> lazyeval 0.2.2 2019-03-15 [2] CRAN (R 4.5.0)
#> leidenbase 0.1.35 2025-04-02 [2] CRAN (R 4.5.0)
#> lifecycle 1.0.4 2023-11-07 [2] CRAN (R 4.5.0)
#> limma 3.64.1 2025-05-25 [2] Bioconductor 3.21 (R 4.5.0)
#> listenv 0.9.1 2024-01-29 [2] CRAN (R 4.5.0)
#> lmtest 0.9-40 2022-03-21 [2] CRAN (R 4.5.0)
#> locfit 1.5-9.12 2025-03-05 [2] CRAN (R 4.5.0)
#> magick 2.8.7 2025-06-06 [2] CRAN (R 4.5.0)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.5.0)
#> MASS 7.3-65 2025-02-28 [5] CRAN (R 4.4.3)
#> Matrix 1.7-3 2025-03-11 [5] CRAN (R 4.4.3)
#> MatrixGenerics 1.20.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> matrixStats 1.5.0 2025-01-07 [2] CRAN (R 4.5.0)
#> metapod 1.16.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> mgcv 1.9-1 2023-12-21 [5] CRAN (R 4.3.2)
#> mime 0.13 2025-03-17 [2] CRAN (R 4.5.0)
#> miniUI 0.1.2 2025-04-17 [2] CRAN (R 4.5.0)
#> mycor 0.1.1 2018-04-10 [2] CRAN (R 4.5.0)
#> nlme 3.1-168 2025-03-31 [5] CRAN (R 4.4.3)
#> openxlsx 4.2.8 2025-01-25 [2] CRAN (R 4.5.0)
#> parallelly 1.45.0 2025-06-02 [2] CRAN (R 4.5.0)
#> patchwork 1.3.0 2024-09-16 [2] CRAN (R 4.5.0)
#> pbapply 1.7-2 2023-06-27 [2] CRAN (R 4.5.0)
#> pillar 1.10.2 2025-04-05 [2] CRAN (R 4.5.0)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.5.0)
#> pkgdown 2.1.3 2025-05-25 [2] CRAN (R 4.5.0)
#> plotly 4.10.4 2024-01-13 [2] CRAN (R 4.5.0)
#> plyr * 1.8.9 2023-10-02 [2] CRAN (R 4.5.0)
#> png 0.1-8 2022-11-29 [2] CRAN (R 4.5.0)
#> polyclip 1.10-7 2024-07-23 [2] CRAN (R 4.5.0)
#> ppcor 1.1 2015-12-03 [2] CRAN (R 4.5.0)
#> presto 1.0.0 2025-05-22 [2] Github (immunogenomics/presto@7636b3d)
#> prettyunits 1.2.0 2023-09-24 [2] CRAN (R 4.5.0)
#> progress 1.2.3 2023-12-06 [2] CRAN (R 4.5.0)
#> progressr 0.15.1 2024-11-22 [2] CRAN (R 4.5.0)
#> promises 1.3.3 2025-05-29 [2] CRAN (R 4.5.0)
#> purrr 1.0.4 2025-02-05 [2] CRAN (R 4.5.0)
#> R.methodsS3 1.8.2 2022-06-13 [2] CRAN (R 4.5.0)
#> R.oo 1.27.1 2025-05-02 [2] CRAN (R 4.5.0)
#> R.utils 2.13.0 2025-02-24 [2] CRAN (R 4.5.0)
#> R6 2.6.1 2025-02-15 [2] CRAN (R 4.5.0)
#> ragg 1.4.0 2025-04-10 [2] CRAN (R 4.5.0)
#> RANN 2.6.2 2024-08-25 [2] CRAN (R 4.5.0)
#> RColorBrewer 1.1-3 2022-04-03 [2] CRAN (R 4.5.0)
#> Rcpp 1.0.14 2025-01-12 [2] CRAN (R 4.5.0)
#> RcppAnnoy 0.0.22 2024-01-23 [2] CRAN (R 4.5.0)
#> RcppHNSW 0.6.0 2024-02-04 [2] CRAN (R 4.5.0)
#> RCurl 1.98-1.17 2025-03-22 [2] CRAN (R 4.5.0)
#> reshape2 1.4.4 2020-04-09 [2] CRAN (R 4.5.0)
#> restfulr 0.0.15 2022-06-16 [2] CRAN (R 4.5.0)
#> reticulate 1.42.0 2025-03-25 [2] CRAN (R 4.5.0)
#> rhdf5 2.52.1 2025-06-08 [2] Bioconductor 3.21 (R 4.5.0)
#> rhdf5filters 1.20.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> Rhdf5lib 1.30.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> rjson 0.2.23 2024-09-16 [2] CRAN (R 4.5.0)
#> rlang 1.1.6 2025-04-11 [2] CRAN (R 4.5.0)
#> rmarkdown 2.29 2024-11-04 [2] CRAN (R 4.5.0)
#> ROCR 1.0-11 2020-05-02 [2] CRAN (R 4.5.0)
#> Rsamtools 2.24.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> RSpectra 0.16-2 2024-07-18 [2] CRAN (R 4.5.0)
#> rstatix 0.7.2 2023-02-01 [2] CRAN (R 4.5.0)
#> rstudioapi 0.17.1 2024-10-22 [2] CRAN (R 4.5.0)
#> rsvd 1.0.5 2021-04-16 [2] CRAN (R 4.5.0)
#> rsvg 2.6.2 2025-03-23 [2] CRAN (R 4.5.1)
#> rtracklayer 1.68.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> Rtsne 0.17 2023-12-07 [2] CRAN (R 4.5.0)
#> S4Arrays 1.8.1 2025-06-01 [2] Bioconductor 3.21 (R 4.5.0)
#> S4Vectors 0.46.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> sass 0.4.10 2025-04-11 [2] CRAN (R 4.5.0)
#> ScaledMatrix 1.16.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> scales 1.4.0 2025-04-24 [2] CRAN (R 4.5.0)
#> scater 1.36.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> scattermore 1.2 2023-06-12 [2] CRAN (R 4.5.0)
#> scDblFinder 1.22.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> scran 1.36.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> sctransform 0.4.2 2025-04-30 [2] CRAN (R 4.5.0)
#> scuttle 1.18.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> sessioninfo 1.2.3 2025-02-05 [2] CRAN (R 4.5.0)
#> Seurat * 5.3.0 2025-04-23 [2] CRAN (R 4.5.0)
#> SeuratObject * 5.1.0 2025-04-22 [2] CRAN (R 4.5.0)
#> shiny 1.10.0 2024-12-14 [2] CRAN (R 4.5.0)
#> SingleCellExperiment 1.30.1 2025-05-07 [2] Bioconductor 3.21 (R 4.5.0)
#> sjlabelled 1.2.0 2022-04-10 [2] CRAN (R 4.5.0)
#> sjmisc 2.8.10 2024-05-13 [2] CRAN (R 4.5.0)
#> sp * 2.2-0 2025-02-01 [2] CRAN (R 4.5.0)
#> spam 2.11-1 2025-01-20 [2] CRAN (R 4.5.0)
#> SparseArray 1.8.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> sparseMatrixStats 1.20.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> spatstat.data 3.1-6 2025-03-17 [2] CRAN (R 4.5.0)
#> spatstat.explore 3.4-3 2025-05-21 [2] CRAN (R 4.5.0)
#> spatstat.geom 3.4-1 2025-05-20 [2] CRAN (R 4.5.0)
#> spatstat.random 3.4-1 2025-05-20 [2] CRAN (R 4.5.0)
#> spatstat.sparse 3.1-0 2024-06-21 [2] CRAN (R 4.5.0)
#> spatstat.univar 3.1-3 2025-05-08 [2] CRAN (R 4.5.0)
#> spatstat.utils 3.1-4 2025-05-15 [2] CRAN (R 4.5.0)
#> statmod 1.5.0 2023-01-06 [2] CRAN (R 4.5.0)
#> stringi 1.8.7 2025-03-27 [2] CRAN (R 4.5.0)
#> stringr 1.5.1 2023-11-14 [2] CRAN (R 4.5.0)
#> SummarizedExperiment 1.38.1 2025-04-30 [2] Bioconductor 3.21 (R 4.5.0)
#> survival 3.8-3 2024-12-17 [5] CRAN (R 4.4.2)
#> svglite 2.2.1 2025-05-12 [2] CRAN (R 4.5.0)
#> systemfonts 1.2.3 2025-04-30 [2] CRAN (R 4.5.0)
#> tensor 1.5 2012-05-05 [2] CRAN (R 4.5.0)
#> textshaping 1.0.1 2025-05-01 [2] CRAN (R 4.5.0)
#> tibble * 3.3.0 2025-06-08 [2] CRAN (R 4.5.0)
#> tidyr 1.3.1 2024-01-24 [2] CRAN (R 4.5.0)
#> tidyselect 1.2.1 2024-03-11 [2] CRAN (R 4.5.0)
#> tidyverse 2.0.0 2023-02-22 [2] CRAN (R 4.5.0)
#> UCSC.utils 1.4.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> uuid 1.2-1 2024-07-29 [2] CRAN (R 4.5.0)
#> uwot 0.2.3 2025-02-24 [2] CRAN (R 4.5.0)
#> vctrs 0.6.5 2023-12-01 [2] CRAN (R 4.5.0)
#> vipor 0.4.7 2023-12-18 [2] CRAN (R 4.5.0)
#> viridis 0.6.5 2024-01-29 [2] CRAN (R 4.5.0)
#> viridisLite 0.4.2 2023-05-02 [2] CRAN (R 4.5.0)
#> withr 3.0.2 2024-10-28 [2] CRAN (R 4.5.0)
#> WriteXLS 6.8.0 2025-05-22 [2] CRAN (R 4.5.0)
#> xfun 0.52 2025-04-02 [2] CRAN (R 4.5.0)
#> xgboost 1.7.11.1 2025-05-15 [2] CRAN (R 4.5.0)
#> XML 3.99-0.18 2025-01-01 [2] CRAN (R 4.5.0)
#> xml2 1.3.8 2025-03-14 [2] CRAN (R 4.5.0)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.5.0)
#> XVector 0.48.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> yaml 2.3.10 2024-07-26 [2] CRAN (R 4.5.0)
#> zellkonverter 1.18.0 2025-04-15 [2] Bioconductor 3.21 (R 4.5.0)
#> zip 2.3.3 2025-05-13 [2] CRAN (R 4.5.0)
#> zoo 1.8-14 2025-04-10 [2] CRAN (R 4.5.0)
#>
#> [1] /tmp/RtmpISVWTJ/temp_libpath14fb8d3fdbc303
#> [2] /home/mariano/R/x86_64-pc-linux-gnu-library/4.5
#> [3] /usr/local/lib/R/site-library
#> [4] /usr/lib/R/site-library
#> [5] /usr/lib/R/library
#> * ββ Packages attached to the search path.
#>
#> β Python configuration βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> python: /home/mariano/.venv/DOtools/bin/python
#> libpython: /home/mariano/.venv/DOtools/lib/libpython3.11.so
#> pythonhome: /home/mariano/.venv/DOtools:/home/mariano/.venv/DOtools
#> version: 3.11.13 | packaged by conda-forge | (main, Jun 4 2025, 14:48:23) [GCC 13.3.0]
#> numpy: /home/mariano/.venv/DOtools/lib/python3.11/site-packages/numpy
#> numpy_version: 1.26.4
#> anndata: /home/mariano/.venv/DOtools/lib/python3.11/site-packages/anndata
#>
#> NOTE: Python version was forced by use_python() function
#>
#> ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ