Skip to contents

Performs iterative reclustering on each major cluster found by FindClusters in a Seurat or SCE object. It refines the clusters using the FindSubCluster function for better resolution and fine-tuned annotation. The new clustering results are stored in a metadata column called annotation_recluster. Suitable for improving cluster precision and granularity after initial clustering.

Usage

DO.FullRecluster(
  sce_object,
  over_clustering = "seurat_clusters",
  res = 0.5,
  algorithm = 4,
  graph.name = "RNA_snn"
)

Arguments

sce_object

The seurat or SCE object

over_clustering

Column in metadata in object with clustering assignments for cells, default seurat_clusters

res

Resolution for the new clusters, default 0.5

algorithm

Set one of the available algorithms found in FindSubCLuster function, default = 4: leiden

graph.name

A builded neirest neighbor graph

Value

a Seurat or SCE Object with new clustering named annotation_recluster

Author

Mariano Ruz Jurado

Examples

sce_data <- readRDS(system.file("extdata", "sce_data.rds", package = "DOtools"))

sce_data <- DO.FullRecluster(
  sce_object = sce_data
)
#> Computing nearest neighbor graph
#> Computing SNN
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> 2 singletons identified. 3 final clusters.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> 1 singletons identified. 3 final clusters.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> 1 singletons identified. 2 final clusters.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> 1 singletons identified. 3 final clusters.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#> Warning: `random.seed` must be greater than 0 for leiden clustering, resetting `random.seed` to 1.
#>