DO.CellBender
DO.CellBender.Rd
It is supposed to make something similar than the no longer working DietSeurat function, by removing no longer needed layers from th object. This function wraps a system call to a bash script for running CellBender on CellRanger outputs. It ensures required inputs are available and optionally installs CellBender in a conda env.
Usage
DO.CellBender(
cellranger_path,
output_path,
samplenames = NULL,
cuda = TRUE,
cpu_threads = 15,
epochs = 150,
lr = 1e-05,
estimator_multiple_cpu = FALSE,
log = TRUE,
conda_path = NULL,
BarcodeRanking = TRUE,
bash_script = system.file("bash", "_run_CellBender.sh", package = "DOtools")
)
Arguments
- cellranger_path
Path to folder with CellRanger outputs.
- output_path
Output directory for CellBender results.
- samplenames
Optional vector of sample names. If NULL, will autodetect folders in
cellranger_path
.- cuda
Logical, whether to use GPU (CUDA).
- cpu_threads
Number of CPU threads to use.
- epochs
Number of training epochs.
- lr
Learning rate.
- estimator_multiple_cpu
Use estimator with multiple CPU threads (experimental).
- log
Whether to enable logging.
- conda_path
Optional path to the conda environment.
- BarcodeRanking
Optional Calculation of estimated cells in samples through DropletUtils implementation
- bash_script
Path to the bash script that runs CellBender.
Examples
if (FALSE) { # \dontrun{
# Define paths
cellranger_path <- "/mnt/data/cellranger_outputs"
output_path <- "/mnt/data/cellbender_outputs"
# Optional: specify sample names if automatic detection is not desired
samplenames <- c("Sample_1", "Sample_2")
# Run CellBender (uses GPU by default)
DO.CellBender(cellranger_path = cellranger_path,
output_path = output_path,
samplenames = samplenames,
cuda = TRUE,
cpu_threads = 8,
epochs = 100,
lr = 0.00001,
estimator_multiple_cpu = FALSE,
log = TRUE)
} # }