Skip to contents

This function calculates different metrics to evaluate the integration of scRNA expression matrices in a new dimension. Its a wrapper function around scib batch correction metrics

Usage

DO.EvalIntegration(
  sce_object,
  label_key = "annotation",
  batch_key = "orig.ident",
  type_ = "embed",
  pcr_covariate = "orig.ident",
  pcr_n_comps = 30,
  scale = TRUE,
  verbose = FALSE,
  n_cores = 10,
  assay = "RNA",
  integration = "INTEGRATED.CCA",
  kBET = TRUE,
  cells.use = NULL,
  subsample = NULL,
  min_per_batch = NULL,
  all_scores_silhouette = FALSE,
  ...
)

Arguments

sce_object

Seurat or SCE object.

label_key

character, Annotation column

batch_key

character, Sample column

type_

character, default: "embed"

pcr_covariate

character, covariate column for pcr

pcr_n_comps

integer, number of components for pcr

scale

boolean, default: TRUE

verbose

boolean, defult: FALSE

n_cores

integer, Number of cores used for calculations

assay

character, Name of the assay the integration is saved in

integration

character, Name of the integration to evaluate

kBET

boolean, if kBET should be run

cells.use

vector, named cells to use for kBET subsetting

subsample

float, for starified subsampling,

min_per_batch

integer, minimum number of cells per batch

all_scores_silhouette

boolean, define if all scores of silhouette return

...

Additionally arguments for kBET

Value

DataFrame with score for the given integration

Author

Mariano Ruz Jurado

Examples

if (FALSE) { # \dontrun{
sce_data <-
    readRDS(system.file("extdata", "sce_data.rds", package = "DOtools"))

DO.EvalIntegration(
    sce_object = sce_data,
    label_key = "annotation",
    batch_key = "orig.ident",
    type_ = "embed",
    pcr_covariate = "orig.ident",
    pcr_n_comps = 30,
    scale = TRUE,
    verbose = FALSE,
    n_cores = 10,
    assay = "RNA",
    integration = "INTEGRATED.CCA",
    kBET = TRUE,
    cells.use = NULL,
    subsample = NULL,
    min_per_batch = NULL,
    all_scores_silhouette = FALSE
)
} # }